Adult mammalian kidney is derived from the metanephros (nephrons) and mesonephros (collecting system). Several transcription factors such as PAX2, PAX8, CK7, and WT1 are known to regulate the development of kidneys. Mutations in an oncogenic protein p63, a cause of Ectrodactyly-ectodermal dysplasia-clefting syndrome 3, has been shown to cause genitourinary anomalies. However, Gbx2, a transcription factor involved in brain and cardiovascular system maturation has not been studied in context with kidney development. In this study, we compared the expression of markers of specific nephron segments in kidneys from 18-day embryonic age (E18.5) of p63 knock out (KO) and Gbx2 neo/neo (with 6-10% of WT expression) mice. Kidneys from p63 KO or Gbx2 neo/neo mice at E18.5 were embedded in paraffin and sections (5 mm) were studied at a light microscope after staining with Hematoxylin Eosin (HE) and immunohistochemistry. Antibody staining was performed against HNFa (proximal tubule), NKCC2 (loop of Henle), NCC (distal tubule), and Aqp2 (CCT) and Na-K ATPase. HE staining showed excessive red blood cell infiltration in the kidneys of Gbx2 neo/neo mice as compared to the kidneys of p63 KO mice. However, the glomerular and tubular structures were similar in both groups. Expression of markers of all nephron segments was significantly less in kidneys from Gbx2 neo/neo mice as compared to kidneys from p63 KO mice. The expression of Na-K ATPase was similar in kidneys from both mouse groups. Based on our observations, we conclude that Gbx2 may play an important role in kidney development. Gbx2 is not expressed in the kidneys, but its expression is essential for vascular development. Therefore, Gbx2 may play an important role in regulating kidney development through the control of vascular development. Further studies are required to confirm the role of Gbx2 in kidney development. This study provides evidence of an unknown function of Gbx2 and may help us in understanding the mechanisms of kidney development. R25AG047843 This abstract was presented at the American Physiology Summit 2025 and is only available in HTML format. There is no downloadable file or PDF version. The Physiology editorial board was not involved in the peer review process. 
                        more » 
                        « less   
                    This content will become publicly available on July 1, 2026
                            
                            A Potential New Role for Gbx2 in Kidney Development
                        
                    
    
            Introduction: The mature mammalian kidney is derived from the metanephros (nephrons) and mesonephros (collecting system). Several transcription factors such as PAX2, PAX8, CK7, and WT1 are known to regulate the development of kidneys. Other factors influence the kidney development via regulation of interacting tissues, like vascularization. Mutations in p63, a member of the p53 family of tumor suppression genes, causes Ectrodactylyectodermal dysplasia-clefting syndrome 3, which presents also with genitourinary anomalies. However, Gbx2, a transcription factor mainly known for its role in central nervous system development has not been studied in context with kidney development. Here, we compared the expression of markers of specific nephron segments in kidneys from 18-day embryonic age (E18.5) of p63-/- and Gbx2neo/neo (with 6-10% of WT expression) mice. Research Aim: Gbx2 is not known to be involved in kidney development. However, unusual histology of the kidneys of Gbx2 mutant mice implies otherwise. We aim to identify if and how Gbx2 influences kidney development. Methods: Kidneys from WT, p63-/-, and Gbx2neo/neo mice at E18.5 were embedded in paraffine and serial sectioned (5 mm). The sections were studied at a light microscope after staining with Hematoxylin Eosin (HE) and immunohistochemistry. Antibody staining was performed against HNFa (proximal tubule), NKCC2 (loop of Henle), NCC (distal tubule), and Aqp2 (CCT), and Na-K ATPase. Results: The glomerular and tubular structures were similar in in all mice studied. However, HE staining showed excessive red blood cell infiltration in the kidneys of Gbx2neo/neo mice as compared to the kidneys of WT and p63-/- mice. Expression of markers of all nephron segments was significantly less in kidneys from Gbx2neo/ neo mice as compared to kidneys from WT and p63-/- mice. The expression of Na-K ATPase was similar in kidneys from all mice. Discussion: Currently Gbx2 is not linked to kidney development. However, Gbx2 is involved in vascular development. The observed red blood infiltration implies that Gbx2 deficit affects vascular ontogeny during the kidney formation and therefore also affects kidney development and function. Further studies are required and currently underway in our labs to confirm the role of Gbx2 in vascular and kidney development. Significance and implication: This study provides evidence of a yet unknown function of Gbx2 and may help us in understanding the tissue interactions necessary for normal kidney development. Session: Developmental Biology Award Symposium Funding or Support: NSF EiR-HBCU #2000005 (JMZC) 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2000005
- PAR ID:
- 10616867
- Publisher / Repository:
- Developmental Dynamics
- Date Published:
- Journal Name:
- Developmental Dynamics
- Volume:
- 254
- Issue:
- 7
- ISSN:
- 1058-8388
- Page Range / eLocation ID:
- 781 to 782
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Developmental biology-inspired strategies for tissue-building have extraordinary promise for regenerative medicine, spurring interest in the relationship between cell biophysical properties and morphological transitions. However, mapping gene or protein expression data to cell biophysical properties to physical morphogenesis remains challenging with current techniques. Here, we presentmultiplexedadhesion andtraction ofcells athighyield (MATCHY). MATCHY advances the multiplexing and throughput capabilities of existing traction force and cell–cell adhesion assays using microfabrication and a semiautomated computation scheme with machine learning–driven cell segmentation. Both biophysical assays are coupled with serial downstream immunofluorescence to extract cell type/signaling state information. MATCHY is especially suited to complex primary tissue-, organoid-, or biopsy-derived cell mixtures since it does not rely on a priori knowledge of cell surface markers, cell sorting, or use of lineage-specific reporter animals. We first validate MATCHY on canine kidney epithelial cells engineered for rearranged during transfection (RET) tyrosine kinase expression and quantify a relationship between downstream signaling and cell traction. We then use MATCHY to create a biophysical atlas of mouse embryonic kidney primary cells and identify distinct biophysical states along the nephron differentiation trajectory. Our data complement expression-level knowledge of adhesion molecule changes that accompany nephron differentiation with quantitative biophysical information. These data reveal an “energetic ratchet” that accounts for spatial trends in nephron progenitor cell condensation as they differentiate into early nephron structures, which we validate through agent-based computational simulation. MATCHY offers semiautomated cell biophysical characterization at >10,000-cell throughput, an advance benefiting fundamental studies and new synthetic tissue strategies for regenerative medicine.more » « less
- 
            Surfactant protein D (SP-D) is a C-type collectin and plays an important role in innate immunity and homeostasis in the lung. This study studied SP-D role in the nontypeable Haemophilus influenzae (NTHi)-induced otitis media (OM) mouse model. Wild-type C57BL/6 (WT) and SP-D knockout (KO) mice were used in this study. Mice were injected in the middle ear (ME) with 5 μL of NTHi bacterial solution (3.5 × 105 CFU/ear) or with the same volume of sterile saline (control). Mice were sacrificed at 3 time points, days 1, 3, and 7, after treatment. We found SP-D expression in the Eustachian tube (ET) and ME mucosa of WT mice but not in SP-D KO mice. After infection, SP-D KO mice showed more intense inflammatory changes evidenced by the increased mucosal thickness and inflammatory cell infiltration in the ME and ET compared to WT mice (p < 0.05). Increased bacterial colony-forming units and cytokine (IL-6 and IL-1β) levels in the ear washing fluid of infected SP-D KO mice were compared to infected WT mice. Molecular analysis revealed higher levels of NF-κB and NLRP3 activation in infected SP-D KO compared to WT mice (p < 0.05). In vitro studies demonstrated that SP-D significantly induced NTHi bacterial aggregation and enhanced bacterial phagocytosis by macrophages (p < 0.05). Furthermore, human ME epithelial cells showed a dose-dependent increased expression of NLRP3 and SP-D proteins after LPS treatment. We conclude that SP-D plays a critical role in innate immunity and disease resolution through enhancing host defense and regulating inflammatory NF-κB and NLRP3 activation in experimental OM mice.more » « less
- 
            Beyond glycemic control, SGLT2 inhibitors (SGLT2i) have protective effects on cardiorenal function. Renoprotection has been suggested to involve inhibition of NHE3 leading to reduced ATP-dependent tubular workload and mitochondrial oxygen consumption. NHE3 activity is also important for regulation of endosomal pH, but the effects of SGLT2i on endocytosis are unknown. We used a highly differentiated cell culture model of proximal tubule (PT) cells to determine the direct effects of SGLT2i on Na+-dependent fluid transport and endocytic uptake in this nephron segment. Strikingly, canagliflozin but not empagliflozin reduced fluid transport across cell monolayers, and dramatically inhibited endocytic uptake of albumin. These effects were independent of glucose and occurred at clinically relevant concentrations of drug. Canagliflozin acutely inhibited surface NHE3 activity, consistent with a direct effect, but did not affect endosomal pH or NHE3 phosphorylation. Additionally, canagliflozin rapidly and selectively inhibited mitochondrial complex I activity. Inhibition of mitochondrial complex I by metformin recapitulated the effects of canagliflozin on endocytosis and fluid transport, whereas modulation of downstream effectors AMPK and mTOR did not. Mice given a single dose of canagliflozin excreted twice as much urine over 24 h compared with empagliflozin-treated mice despite similar water intake. We conclude that canagliflozin selectively suppresses Na+-dependent fluid transport and albumin uptake in PT cells via direct inhibition of NHE3 and of mitochondrial function upstream of the AMPK/mTOR axis. These additional targets of canagliflozin contribute significantly to reduced PT Na+-dependent fluid transport in vivo.more » « less
- 
            Vascularization is essential for realizing thick and functional tissue constructs that can be utilized for in vitro study platforms and in vivo grafts. The vasculature enables the transport of nutrients, oxygen, and wastes and is also indispensable to organ functional units such as the nephron filtration unit, the blood–air barrier, and the blood–brain barrier. This review aims to discuss the latest progress of organ-like vascularized constructs with specific functionalities and realizations even though they are not yet ready to be used as organ substitutes. First, the human vascular system is briefly introduced and related design considerations for engineering vascularized tissues are discussed. Second, up-to-date creation technologies for vascularized tissues are summarized and classified into the engineering and cellular self-assembly approaches. Third, recent applications ranging from in vitro tissue models, including generic vessel models, tumor models, and different human organ models such as heart, kidneys, liver, lungs, and brain, to prevascularized in vivo grafts for implantation and anastomosis are discussed in detail. The specific design considerations for the aforementioned applications are summarized and future perspectives regarding future clinical applications and commercialization are provided.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
