Surfactant protein A (SP-A) plays an important role in innate immune response and host defense against various microorganisms through opsonization and complement activation. To investigate the role of SP-A in non-typeable Haemophilus influenzae (NTHi)-induced acute otitis media, this study used wild type C57BL/6 (WT) and SP-A knockout (KO) mice. We divided mice into an infection group in which the middle ear (ME) was injected with NTHi and a control group that received the same treatment using normal saline. Mice were sacrificed on d 1, 3, and 7 after treatment. Temporal bone samples were fixed for histological, cellular, and molecular analyses. Ear washing fluid (EWF) was collected for culture and analyses of pro-inflammatory cytokines and inflammatory cells. SP-A-mediated bacterial aggregation and killing and phagocytosis by macrophages were studied in vitro. SP-A expression was detected in the ME and Eustachian tube mucosa of WT mice but not KO mice. After infection, KO mice showed more severe inflammation evidenced by increased ME mucosal thickness and inflammatory cell infiltration and higher NF-κB activation compared to WT mice. The levels of IL-6 and IL-1β in the EWF of infected KO mice were higher compared to infected WT mice on d 1. Our studies demonstrated that SP-A mediated NTHi aggregation and killing and enhanced bacterial phagocytosis by macrophages in vitro and modulated inflammation of the ME in otitis media in vivo. 
                        more » 
                        « less   
                    
                            
                            Role of Surfactant Protein D in Experimental Otitis Media
                        
                    
    
            Surfactant protein D (SP-D) is a C-type collectin and plays an important role in innate immunity and homeostasis in the lung. This study studied SP-D role in the nontypeable Haemophilus influenzae (NTHi)-induced otitis media (OM) mouse model. Wild-type C57BL/6 (WT) and SP-D knockout (KO) mice were used in this study. Mice were injected in the middle ear (ME) with 5 μL of NTHi bacterial solution (3.5 × 105 CFU/ear) or with the same volume of sterile saline (control). Mice were sacrificed at 3 time points, days 1, 3, and 7, after treatment. We found SP-D expression in the Eustachian tube (ET) and ME mucosa of WT mice but not in SP-D KO mice. After infection, SP-D KO mice showed more intense inflammatory changes evidenced by the increased mucosal thickness and inflammatory cell infiltration in the ME and ET compared to WT mice (p < 0.05). Increased bacterial colony-forming units and cytokine (IL-6 and IL-1β) levels in the ear washing fluid of infected SP-D KO mice were compared to infected WT mice. Molecular analysis revealed higher levels of NF-κB and NLRP3 activation in infected SP-D KO compared to WT mice (p < 0.05). In vitro studies demonstrated that SP-D significantly induced NTHi bacterial aggregation and enhanced bacterial phagocytosis by macrophages (p < 0.05). Furthermore, human ME epithelial cells showed a dose-dependent increased expression of NLRP3 and SP-D proteins after LPS treatment. We conclude that SP-D plays a critical role in innate immunity and disease resolution through enhancing host defense and regulating inflammatory NF-κB and NLRP3 activation in experimental OM mice. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1722630
- PAR ID:
- 10302353
- Date Published:
- Journal Name:
- Journal of Innate Immunity
- Volume:
- 13
- Issue:
- 4
- ISSN:
- 1662-811X
- Page Range / eLocation ID:
- 197 to 210
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Otitis media (OM) is the most common disease among young children and one of the most frequent reasons to visit the pediatrician. Development of OM requires nasopharyngeal colonization by a pathogen which must gain access to the tympanic cavity through the eustachian tube (ET) along with being able to overcome the defense mechanisms of the immune system and middle ear mucosa. OM can be caused by viral or bacterial infection. The three main bacterial pathogens are Streptococcus pneumoniae, nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis. Innate immunity is important in OM resolution as the disease occurs in very young children before the development of specific immunity. Elements of innate immunity include natural barriers and pattern recognition receptors such as Toll like receptors (TLRs), and Nod like receptors (NLRs). Surfactant proteins A (SP-A) and D (SP-D) act as pattern recognition receptors and are found in the lung and many other tissues including the ET and the middle ear where they probably function in host defense. Surfactant has a potential for use in the treatment of OM due to surface tension lowering function in the ET, and the possible immune functions of SP-D and SP-A in the middle ear and ET.more » « less
- 
            Chu, Hiutung (Ed.)ABSTRACT Crohn’s disease (CD) is a presentation of inflammatory bowel disease (IBD) that manifests in childhood and adolescence and involves chronic and severe enterocolitis, immune and gut microbial dysregulation, and other complications. Diet and gut-microbiota-produced metabolites are sources of anti-inflammatories that could ameliorate symptoms. However, questions remain on how IBD influences biogeographic patterns of microbial location and function in the gut, how early life transitional gut communities are affected by IBD and diet interventions, and how disruption to biogeography alters disease mediation by diet components or microbial metabolites. Many studies on diet and IBD use a chemically induced ulcerative colitis model, despite the availability of an immune-modulated CD model. Interleukin-10-knockout (IL-10-KO) mice on a C57BL/6 background, beginning at age 4 or 7 weeks, were fed a control diet or one containing 10% (wt/wt) raw broccoli sprouts, which was high in the sprout-sourced anti-inflammatory sulforaphane. Diets began 7 days prior to, and for 2 weeks after inoculation withHelicobacter hepaticus,which triggers Crohn’s-like symptoms in these immune-impaired mice. The broccoli sprout diet increased sulforaphane in plasma; decreased weight stagnation, fecal blood, and diarrhea associated; and increased microbiota richness in the gut, especially in younger mice. Sprout diets resulted in some anatomically specific bacteria in younger mice and reduced the prevalence and abundance of pathobiont bacteria which trigger inflammation in the IL-10-KO mouse, for example,Escherichia coliandHelicobacter. Overall, the IL-10-KO mouse model is responsive to a raw broccoli sprout diet and represents an opportunity for more diet-host-microbiome research. IMPORTANCETo our knowledge, IL-10-KO mice have not previously been used to investigate the interactions of host, microbiota, and broccoli, broccoli sprouts, or broccoli bioactives in resolving symptoms of CD. We showed that a diet containing 10% raw broccoli sprouts increased the plasma concentration of the anti-inflammatory compound sulforaphane and protected mice to varying degrees against disease symptoms, including weight loss or stagnation, fecal blood, and diarrhea. Younger mice responded more strongly to the diet, further reducing symptoms, as well as increased gut bacterial richness, increased bacterial community similarity to each other, and more location-specific communities than older mice on the diet intervention. Crohn’s disease disrupts the lives of patients and requires people to alter dietary and lifestyle habits to manage symptoms. The current medical treatment is expensive with significant side effects, and a dietary intervention represents an affordable, accessible, and simple strategy to reduce the burden of symptoms.more » « less
- 
            Brodsky, Igor E. (Ed.)ABSTRACT The opportunistic human pathogen Pseudomonas aeruginosa PAO1 has an extensive metabolism, enabling it to utilize a wide range of structurally diverse compounds to meet its nutritional and energy needs. Interestingly, the utilization of some of the more unusual compounds often associated with a eukaryotic-host environment is regulated via enhancer-binding proteins (EBPs) in P. aeruginosa . Whether the utilization of such compounds and the EBPs involved contribute to the pathogenesis of P. aeruginosa remains to be fully understood. To narrow this gap, we investigated the roles of the EBPs EatR (regulator of ethanolamine catabolism), DdaR (regulator of methylarginine catabolism), and MifR (regulator of α-ketoglutarate or α-KG transport) in the virulence of P. aeruginosa PAO1 in a pneumonia-induced septic mouse model. Deletion of genes encoding EatR and DdaR had no significant effect on the mortality of P. aeruginosa PAO1-infected mice compared to wide-type (WT) PAO1-infected mice. In contrast, infected mice with Δ mifR mutant exhibited a significant reduction (~50%) in the mortality rate compared with WT PAO1 ( P < 0.05). Infected mice with Δ mifR PAO1 had lower lung injury scores, fewer inflammatory cells, decreased proinflammatory cytokines, and decreased apoptosis and cell death compared to mice infected with WT PAO1 ( P < 0.05). Furthermore, molecular analysis revealed decreased NLRP3 inflammasome activation in infected mice with Δ mifR PAO1 compared to WT PAO1 ( P < 0.05). These results suggested that the utilization of α-KG was a contributing factor in P. aeruginosa -mediated pneumonia and sepsis and that MifR-associated regulation may be a potential therapeutic target for P. aeruginosa infectious disease.more » « less
- 
            Abstract A number of studies have examined the effects of 1,25‐dihydroxyvitamin D3(1,25(OH)2D3) on intestinal inflammation driven by immune cells, while little information is currently available about its impact on inflammation caused by intestinal epithelial cell (IEC) defects. Mice lacking IEC‐specificRab11aa recycling endosome small GTPase resulted in increased epithelial cell production of inflammatory cytokines, notably IL‐6 and early onset of enteritis. To determine whether vitamin D supplementation may benefit hosts with epithelial cell‐originated mucosal inflammation, we evaluated in vivo effects of injected 1,25(OH)2D3or dietary supplement of a high dose of vitamin D on the gut phenotypes of IEC‐specificRab11aknockout mice (Rab11aΔIEC). 1,25(OH)2D3administered at 25 ng, two doses per mouse, by intraperitoneal injection, reduced inflammatory cytokine production in knockout mice compared to vehicle‐injected mice. Remarkably, feeding mice with dietary vitamin D supplementation at 20,000 IU/kg spanning fetal and postnatal developmental stages led to improved bodyweights, reduced immune cell infiltration, and decreased inflammatory cytokines. We found that these vitamin D effects were accompanied by decreased NF‐κB (p65) in the knockout intestinal epithelia, reduced tissue‐resident macrophages, and partial restoration of epithelial morphology. Our study suggests that dietary vitamin D supplementation may prevent and limit intestinal inflammation in hosts with high susceptibility to chronic inflammation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    