skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trigeminal Ganglion and Trigeminal Nerves in Gbx2 Neo/neo Mouse Mutants
A key player in brain and neural crest development is the gastrulation-brain-homeobox (Gbx) transcription factor family member, Gbx2. During the early stages of gastrulation, Gbx2 RNA is broadly expressed in the prospective hindbrain and posterior region of the embryo. Later it becomes restricted to a sharp transverse band at the interface between the prospective midbrain and hindbrain, and is maintained in the anterior hindbrain in the developing neuroaxis (Bouillet et al. 1995; Li & Joyner 2001; Martinez-Barbera et al. 2001). Gbx2 regulates diverse developmental processes, including anteroposterior patterning within the mid-/hindbrain boundary and anterior hindbrain (Burroughs-Garcia et al. 2011). Expression of Gbx2 is required for the correct formation of rhombomeres r1-r3 (Wassarman et al. 1997). Loss of Gbx2 function in mouse embryos (Gbx2-/-), results in aberrant neural crest cell patterning leading to defects in neural crest derivatives and to abnormalities in the central nervous system, craniofacial, and cardiovascular components (Byrd & Meyers 2005). Li et al. (2009) demonstrated that Gbx2 is a direct target of the neural crest inducer Wnt, and is essential for neural crest induction. Together, these studies show that Gbx2 resides upstream in the genetic cascade controlling neural crest development and directly regulates the expression of key molecules involved in the migration and survival of neural crest cells that differentiate into neural and other components (e.g., connective tissue) of the head and heart. It was shown that Gbx2neo/neo mouse embryos, in which wild-type levels of Gbx2 expression is reduced to 6-10% of normal, are useful to further elucidate the complexity concerning the role of Gbx2 in anterior hindbrain development (Waters & Lewandoski 2006). Among other malformations, in Gbx2neo/neo embryos the mandibular branch of the trigeminal nerve (CNV3) is absent. CNV3 innervates the muscles of mastication (e.g., pterygoids, masseter, temporalis). However these muscles are needed to suckle and neonate (P0) Gbx2neo/neo mice are not able to suckle and die perinatally (Langenbach & van Eijden 2001). Here we describe the anatomy of the trigeminal ganglion and the trigeminal nerves in neonate Gbx2neo/neo mice and evaluate if there are differences in the muscles of mastication in these mice as compared to wildtype specimens. We expected that we find clear abnormalities in the thickness of the masseter, temporalis, and other muscles innervated by CNV3. However, this is not the case, indicating that the innervation of a muscle is not, as previously thought, needed for the differentiation of the muscles. Histological analyses will give insights into the muscle cell structure and if this is altered in the Gbx2neo/neo mice, which could be related to the loss of motor innervation. The research was funded by NSF EiR HBUC 18-522 awarded to JMZ (#2000005) and STW (#1956450). Bouillet et al. (1995). Dev Dyn, 204: 372-82. Burroughs-Garcia et al. (2011). Dev Dyn, 240: 828-38. Byrd & Meyers (2005). Dev Biol, 284: 233-45. Langenbach & van Eijden(2001). Am Zool, 41: 1338-51. Li et al. (2009). Development, 136: 3267-78. Li & Joyner (2001). Development, 128: 4979-91. Martinez-Barbera et al. (2001). Development, 128: 4789-800. Wassarman et al. (1997). Development, 124: 2923-34. Waters & Lewandoski (2006) Development, 133: 1991-2000. Funding or Support Information: The research was funded by NSF EiR HBUC 18-522 awarded to JMZ (#2000005) and STW(#1956450).  more » « less
Award ID(s):
2000005
PAR ID:
10616908
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Developmental Dynamics
Date Published:
Journal Name:
Developmental Dynamics
Volume:
252
Issue:
7
ISSN:
1058-8388
Page Range / eLocation ID:
854-855
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION:The gastrulation brain homeobox (Gbx) genes are essential for patterning and maintenance of neurons along the anteroposterior axis of the developing neural tube. Knockout (ko) of Gbx2 results in neonatal lethality associated with neurological and other defects. To understand pathologies, ko studies are not realistic as gene loss usually results in death before birth. Gbx2 neo/neo mutant mice express 6-10% of the wildtype Gbx2 expression levels. They have milder malformations than ko mice but lack the cerebellar vermis and mandibular division of the trigeminal nerve (3rd division of 5th cranial nerve = V3), among other defects. These Gbx2 neo/neo mutant mice die perinatally as they are unable to suckle due to lack of motor innervation via V3 to the muscles of mastication. Muscle cells develop largely without interaction with their motor nerve. However, the final differentiation of myocytes requires interactions with nerve fibers. Unexpectedly, the muscles of mastication appear normal in Gbx2 neo/neo mutant mice, despite the lack of V3. METHODS:We performed microdissections of neonate wildtype and Gbx2neo/neo mutant mice. Additionally, we embedded mutant and wildtype mouse embryos in paraffin, serial sectioned them (7 μm), stained the sections with Azan staining, and analyzed specimen microscopically. RESULTS:Current analysis of the data to identify where nerve fibers in the muscles of mastication originate is in process. We favor the origin of these fibers from the facial nerve (7th cranial nerve), which has several overlapping territories with the trigeminal nerve. CONCLUSIONS:Muscles require innervation for their final differentiation steps. The loss of a nerve can result in the invasion of another nerve into the territory of the lost one, which rescues muscle differentiation but not muscle function. IACUC Ziermann Med-20-02, Funding NSF #2000005 to Ziermann. 
    more » « less
  2. For decades it has been established that head muscle development differs from trunk muscle development. Similarly known, even though not in such detail, is that different subgroups of head muscles develop dependent on different underlying gene regulatory networks. Even less well studied are the tissue interactions during the developmental processes. Muscles derived from pharyngeal arch mesoderm depend on interactions with endoderm and neural crest cells, and, to a minor extent, ectodermal cues. Extraocular eye muscles respond to a mix of signals from surrounding mesoderm, but also neural crest cells; however, they are independent of endodermal cues. Head muscles derived from occipital paraxial mesoderm depend on tissue interactions similar to pharyngeal arch muscles but have a different migration trajectory. While the pharyngeal arch mesodermal cells and neural crest cells largely migrate from dorsal to ventral, the occipital paraxial mesodermal cells migrate from dorsal to ventral and from posterior to anterior. During the migration these cells proliferate and even start to differentiate, while pharyngeal mesodermal cells begin the differentiation process after reaching their respective pharyngeal arches. Here we present an overview of tissue interactions during the development of different head muscle populations, highlighting general concepts and main differences. Topic Category: Neural Crest, Placodes and Craniofacial Development Keywords: Craniofacial muscles, Myogenesis Funding or Support Information: NSF #2000005 to JMZC 
    more » « less
  3. Abstract Skeletal muscle has a remarkable regeneration capacity to recover its structure and function after injury, except for the traumatic loss of critical muscle volume, called volumetric muscle loss (VML). Although many extremity VML models have been conducted, craniofacial VML has not been well‐studied due to unavailable in vivo assay tools. Here, this paper reports a wireless, noninvasive nanomembrane system that integrates skin‐wearable printed sensors and electronics for real‐time, continuous monitoring of VML on craniofacial muscles. The craniofacial VML model, using biopsy punch‐induced masseter muscle injury, shows impaired muscle regeneration. To measure the electrophysiology of small and round masseter muscles of active mice during mastication, a wearable nanomembrane system with stretchable graphene sensors that can be laminated to the skin over target muscles is utilized. The noninvasive system provides highly sensitive electromyogram detection on masseter muscles with or without VML injury. Furthermore, it is demonstrated that the wireless sensor can monitor the recovery after transplantation surgery for craniofacial VML. Overall, the presented study shows the enormous potential of the masseter muscle VML injury model and wearable assay tool for the mechanism study and the therapeutic development of craniofacial VML. 
    more » « less
  4. Introduction: The mature mammalian kidney is derived from the metanephros (nephrons) and mesonephros (collecting system). Several transcription factors such as PAX2, PAX8, CK7, and WT1 are known to regulate the development of kidneys. Other factors influence the kidney development via regulation of interacting tissues, like vascularization. Mutations in p63, a member of the p53 family of tumor suppression genes, causes Ectrodactylyectodermal dysplasia-clefting syndrome 3, which presents also with genitourinary anomalies. However, Gbx2, a transcription factor mainly known for its role in central nervous system development has not been studied in context with kidney development. Here, we compared the expression of markers of specific nephron segments in kidneys from 18-day embryonic age (E18.5) of p63-/- and Gbx2neo/neo (with 6-10% of WT expression) mice. Research Aim: Gbx2 is not known to be involved in kidney development. However, unusual histology of the kidneys of Gbx2 mutant mice implies otherwise. We aim to identify if and how Gbx2 influences kidney development. Methods: Kidneys from WT, p63-/-, and Gbx2neo/neo mice at E18.5 were embedded in paraffine and serial sectioned (5 mm). The sections were studied at a light microscope after staining with Hematoxylin Eosin (HE) and immunohistochemistry. Antibody staining was performed against HNFa (proximal tubule), NKCC2 (loop of Henle), NCC (distal tubule), and Aqp2 (CCT), and Na-K ATPase. Results: The glomerular and tubular structures were similar in in all mice studied. However, HE staining showed excessive red blood cell infiltration in the kidneys of Gbx2neo/neo mice as compared to the kidneys of WT and p63-/- mice. Expression of markers of all nephron segments was significantly less in kidneys from Gbx2neo/ neo mice as compared to kidneys from WT and p63-/- mice. The expression of Na-K ATPase was similar in kidneys from all mice. Discussion: Currently Gbx2 is not linked to kidney development. However, Gbx2 is involved in vascular development. The observed red blood infiltration implies that Gbx2 deficit affects vascular ontogeny during the kidney formation and therefore also affects kidney development and function. Further studies are required and currently underway in our labs to confirm the role of Gbx2 in vascular and kidney development. Significance and implication: This study provides evidence of a yet unknown function of Gbx2 and may help us in understanding the tissue interactions necessary for normal kidney development. Session: Developmental Biology Award Symposium Funding or Support: NSF EiR-HBCU #2000005 (JMZC) 
    more » « less
  5. We have developed an artificial intelligence tool, XES Neo, for fitting x-ray emission spectroscopy (XES) data using a genetic algorithm. The Neo package has been applied to extended x-ray absorption fine structure [Terry et al., Appl. Surf. Sci. 547, 149059 (2021)] as well as Nanoindentation data [Burleigh et al., Appl. Surf. Sci. 612, 155734 (2023)] and is in development for x-ray photoelectron spectroscopy data. This package has been expanded to the fitting of XES data by incorporating basic background removal methods (baseline and linear) optimized simultaneously with peak-fitting using the active background approach, as well as the peak shapes Voigt, and an asymmetrical Voigt, known as the Double Lorentzian. The fit parameters are optimized using a robust metaheuristic method, which starts with a population of temporary solutions known as the chromosomes. This population is then evaluated and assigned a fitness score, from which the best solution is then found. Future generations are created through crossover of the best sets of parameters along with some random parameters. Mutation is then done on the new generation using random perturbations to the chromosomal parameters. The population is then evaluated again, and the process continues. The analyzed data presented here are available in the corresponding XESOasis discussion forum (https://xesoasis.org/ai_posted). 
    more » « less