Summary Modern statistical methods for multivariate time series rely on the eigendecomposition of matrix-valued functions such as time-varying covariance and spectral density matrices. The curse of indeterminacy or misidentification of smooth eigenvector functions has not received much attention. We resolve this important problem and recover smooth trajectories by examining the distance between the eigenvectors of the same matrix-valued function evaluated at two consecutive points. We change the sign of the next eigenvector if its distance with the current one is larger than the square root of 2. In the case of distinct eigenvalues, this simple method delivers smooth eigenvectors. For coalescing eigenvalues, we match the corresponding eigenvectors and apply an additional signing around the coalescing points. We establish consistency and rates of convergence for the proposed smooth eigenvector estimators. Simulation results and applications to real data confirm that our approach is needed to obtain smooth eigenvectors.
more »
« less
Minimal pole representation and analytic continuation of matrix-valued correlation functions
We present a minimal pole method for analytically continuing matrix-valued imaginary frequency correlation functions to the real axis, enabling precise access to off-diagonal elements and thus improving the interpretation of self-energies and susceptibilities in quantum simulations. Traditional methods for matrix-valued analytic continuation tend to be either noise sensitive or make ad hoc positivity assumptions. Our approach avoids these issues via the construction of a compact pole representation with shared poles through exponential fits, expanding upon prior work focused on scalar functions. We test our method across various scenarios, including fermionic and bosonic response functions, with and without noise, and for both continuous and discrete spectra of real materials and model systems. Our findings demonstrate that this technique addresses the shortcomings of existing methodologies, such as artificial broadening and positivity violations. The paper is supplemented with a sample implementation in PYTHON.
more »
« less
- Award ID(s):
- 2310182
- PAR ID:
- 10616939
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 110
- Issue:
- 23
- ISSN:
- 2469-9950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We prove that for a GNS-symmetric quantum Markov semigroup, the complete modified logarithmic Sobolev constant is bounded by the inverse of its complete positivity mixing time. For classical Markov semigroups, this gives a short proof that every sub-Laplacian of a Hörmander system on a compact manifold satisfies a modified log-Sobolev inequality uniformly for scalar and matrix-valued functions. For quantum Markov semigroups, we show that the complete modified logarithmic Sobolev constant is comparable to the spectral gap up to the logarithm of the dimension. Such estimates are asymptotically tight for a quantum birth-death process. Our results, along with the consequence of concentration inequalities, are applicable to GNS-symmetric semigroups on general von Neumann algebras.more » « less
-
Pe'er, I. (Ed.)Combinatorial group testing and compressed sensing both focus on recovering a sparse vector of dimensionality n from a much smaller number 𝑚<𝑛 of measurements. In the first approach, the problem is defined over the Boolean field – the goal is to recover a Boolean vector and measurements are Boolean; in the second approach, the unknown vector and the measurements are over the reals. Here, we focus on real-valued group testing setting that more closely fits modern testing protocols relying on quantitative measurements, such as qPCR, where the goal is recovery of a sparse, Boolean vector and the pooling matrix needs to be Boolean and sparse, but the unknown input signal vector and the measurement outcomes are nonnegative reals, and the matrix algebra implied in the test protocol is over the reals. With the recent renewed interest in group testing, focus has been on quantitative measurements resulting from qPCR, but the method proposed for sample pooling were based on matrices designed with Boolean measurements in mind. Here, we investigate constructing pooling matrices dedicated for the real-valued group testing. We provide conditions for pooling matrices to guarantee unambiguous decoding of positives in this setting. We also show a deterministic algorithm for constructing matrices meeting the proposed condition, for small matrix sizes that can be implemented using a laboratory robot. Using simulated data, we show that the proposed approach leads to matrices that can be applied for higher positivity rates than combinatorial group testing matrices considered for viral testing previously. We also validate the approach through wet lab experiments involving SARS-CoV-2 nasopharyngeal swab samples.more » « less
-
We propose a set of techniques to efficiently importance sample the derivatives of a wide range of Bidirectional Reflectance Distribution Function (BRDF) models. In differentiable rendering, BRDFs are replaced by their differential BRDF counterparts, which are real-valued and can have negative values. This leads to a new source of variance arising from their change in sign. Real-valued functions cannot be perfectly importance sampled by a positive-valued PDF, and the direct application of BRDF sampling leads to high variance. Previous attempts at antithetic sampling only addressed the derivative with the roughness parameter of isotropic microfacet BRDFs. Our work generalizes BRDF derivative sampling to anisotropic microfacet models, mixture BRDFs, Oren-Nayar, Hanrahan-Krueger, among other analytic BRDFs. Our method first decomposes the real-valued differential BRDF into a sum of single-signed functions, eliminating variance from a change in sign. Next, we importance sample each of the resulting single-signed functions separately. The first decomposition, positivization, partitions the real-valued function based on its sign, and is effective at variance reduction when applicable. However, it requires analytic knowledge of the roots of the differential BRDF, and for it to be analytically integrable too. Our key insight is that the single-signed functions can have overlapping support, which significantly broadens the ways we can decompose a real-valued function. Our product and mixture decompositions exploit this property, and they allow us to support several BRDF derivatives that positivization could not handle. For a wide variety of BRDF derivatives, our method significantly reduces the variance (up to 58× in some cases) at equal computation cost and enables better recovery of spatially varying textures through gradient-descent-based inverse rendering.more » « less
-
Abstract In linear regression, the coefficients are simple to estimate using the least squares method with a known design matrix for the observed measurements. However, real-world applications may encounter complications such as an unknown design matrix and complex-valued parameters. The design matrix can be estimated from prior information but can potentially cause an inverse problem when multiplying by the transpose as it is generally ill-conditioned. This can be combat by adding regularizers to the model but does not always mitigate the issues. Here, we propose our Bayesian approach to a complex-valued latent variable linear model with an application to functional magnetic resonance imaging (fMRI) image reconstruction. The complex-valued linear model and our Bayesian model are evaluated through extensive simulations and applied to experimental fMRI data.more » « less
An official website of the United States government

