Abstract Axion-like particles (ALPs) can form a network of cosmic strings and domain walls that survives after recombination and leads to anisotropic birefringence of the cosmic microwave background (CMB). In addition to studying cosmic strings, we clarify and emphasize how the formation of ALP-field domain walls impacts the cosmic birefringence signal; these observations provide a unique way of probing ALPs with masses in the range 3 H 0 ≲ m a ≲ 3 H cmb . Using measurements of CMB birefringence from several telescopes, we find no evidence for axion-defect-induced anisotropic birefringence of the CMB. We extract constraints on the model parameters that include the ALP mass m a , ALP-photon coupling 𝒜 ∝ g aγγ f a , the domain wall number N dw , and parameters characterizing the abundance and size of defects in the string-wall network. Considering also recent evidence for isotropic CMB birefringence, we find it difficult to accommodate this with the non-detection of anisotropic birefringence under the assumption that the signal is generated by an ALP defect network.
more »
« less
This content will become publicly available on March 1, 2026
Extracting axion string network parameters from simulated CMB birefringence maps using convolutional neural networks
Axion-like particles may form a network of cosmic strings in the Universe today that can rotate the plane of polarization of cosmic microwave background (CMB) photons. Future CMB observations with improved sensitivity might detect this axion-string-induced birefringence effect, thereby revealing an as-yet unseen constituent of the Universe and offering a new probe of particles and forces that are beyond the Standard Model of Elementary Particle Physics. In this work, we explore how spherical convolutional neural networks (SCNNs) may be used to extract information about the axion string network from simulated birefringence maps. We construct a pipeline to simulate the anisotropic birefringence that would arise from an axion string network, and we train SCNNs to estimate three parameters related to the cosmic string length, the cosmic string abundance, and the axion-photon coupling. Our results demonstrate that neural networks are able to extract information from a birefringence map that is inaccessible with two-point statistics alone (i.e., the angular power spectrum). We also assess the impact of noise on the accuracy of our SCNN estimators, demonstrating that noise at the level anticipated for Stage IV (CMB-S4) measurements would significantly bias parameter estimation for SCNNs trained on noiseless simulated data, and necessitate modeling the noise in the training data.
more »
« less
- Award ID(s):
- 2412797
- PAR ID:
- 10616978
- Publisher / Repository:
- JCAP
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2025
- Issue:
- 03
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The presence of axion strings in the Universe after recombination can leave an imprint on the polarization pattern of the cosmic microwave background radiation through the phenomenon of axion-string-induced birefringence via the hyperlight axion-like particle's coupling to electromagnetism. Across the sky, the polarization rotation angle is expected to display a patchwork of uniform regions with sharp boundaries that arise as the `shadow' of axion string loops. The statistics of such a birefringence sky map are therefore necessarily non-Gaussian. In this article we quantify the non-Gaussianity in axion-string-induced birefringence using two techniques, kurtosis and bispectrum, which correspond to 4- and 3-point correlation functions. If anisotropic birefringence were detected in the future, a measurement of its non-Gaussian properties would facilitate a discrimination across different new physics sources generally, and in the context of axion strings specifically, it would help to break degeneracies between the axion-photon coupling and properties of the string network.more » « less
-
A bstract We study axion strings of hyperlight axions coupled to photons. Hyperlight axions — axions lighter than Hubble at recombination — are a generic prediction of the string axiverse. These axions strings produce a distinct quantized polarization rotation of CMB photons which is $$ \mathcal{O} $$ O ( α em ). As the CMB light passes many strings, this polarization rotation converts E-modes to B-modes and adds up like a random walk. Using numerical simulations we show that the expected size of the final result is well within the reach of current and future CMB experiments through the measurement of correlations of CMB B-modes with E- and T-modes. The quantized polarization rotation angle is topological in nature and can be seen as a geometric phase. Its value depends only on the anomaly coefficient and is independent of other details such as the axion decay constant. Measurement of the anomaly coefficient by measuring this rotation will provide information about the UV theory, such as the quantization of electric charge and the value of the fundamental unit of charge. The presence of axion strings in the universe relies only on a phase transition in the early universe after inflation, after which the string network rapidly approaches an attractor scaling solution. If there are additional stable topological objects such as domain walls, axions as heavy as 10 − 15 eV would be accessible. The existence of these strings could also be probed by measuring the relative polarization rotation angle between different images in gravitationally lensed quasar systems.more » « less
-
I summarize several cosmological and astrophysical probes of axions and axion-like particles. Topics covered include an introduction to the Strong \textsf{CP} problem and axions, axion emission from compact stars and supernovae, the impact of axion dark radiation on the cosmic microwave background (CMB) anisotropies, and the imprint of axion strings on the CMB.more » « less
-
A bstract We study early and late time signatures of both QCD axion strings and hyperlight axion strings (axiverse strings). We focus on charge deposition onto axion strings from electromagnetic fields and subsequent novel neutralizing mechanisms due to bound state formation. While early universe signatures appear unlikely, there are a plethora of late time signatures. Axion strings passing through galaxies obtain a huge charge density, which is neutralized by a dense plasma of bound state Standard Model particles forming a one dimensional “atom”. The charged wave packets on the string, as well as the dense plasma outside, travel at nearly the speed of light along the string. These packets of high energy plasma collide with a center of mass energy of up to 10 9 GeV. These collisions can have luminosities up to seven orders of magnitude larger than the solar luminosity, and last for thousands of years, making them visible at radio telescopes even when they occur cosmologically far away. The new observables are complementary to the CMB observables for hyperlight axion strings that have been recently proposed, and are sensitive to a similar motivated parameter range.more » « less
An official website of the United States government
