skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measures of non-Gaussianity in axion-string-induced CMB birefringence
Abstract The presence of axion strings in the Universe after recombination can leave an imprint on the polarization pattern of the cosmic microwave background radiation through the phenomenon of axion-string-induced birefringence via the hyperlight axion-like particle's coupling to electromagnetism. Across the sky, the polarization rotation angle is expected to display a patchwork of uniform regions with sharp boundaries that arise as the `shadow' of axion string loops. The statistics of such a birefringence sky map are therefore necessarily non-Gaussian. In this article we quantify the non-Gaussianity in axion-string-induced birefringence using two techniques, kurtosis and bispectrum, which correspond to 4- and 3-point correlation functions. If anisotropic birefringence were detected in the future, a measurement of its non-Gaussian properties would facilitate a discrimination across different new physics sources generally, and in the context of axion strings specifically, it would help to break degeneracies between the axion-photon coupling and properties of the string network.  more » « less
Award ID(s):
2114024
PAR ID:
10562231
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Cosmology and Astroparticle Physics
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2023
Issue:
09
ISSN:
1475-7516
Page Range / eLocation ID:
024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Axion-like particles may form a network of cosmic strings in the Universe today that can rotate the plane of polarization of cosmic microwave background (CMB) photons. Future CMB observations with improved sensitivity might detect this axion-string-induced birefringence effect, thereby revealing an as-yet unseen constituent of the Universe and offering a new probe of particles and forces that are beyond the Standard Model of Elementary Particle Physics. In this work, we explore how spherical convolutional neural networks (SCNNs) may be used to extract information about the axion string network from simulated birefringence maps. We construct a pipeline to simulate the anisotropic birefringence that would arise from an axion string network, and we train SCNNs to estimate three parameters related to the cosmic string length, the cosmic string abundance, and the axion-photon coupling. Our results demonstrate that neural networks are able to extract information from a birefringence map that is inaccessible with two-point statistics alone (i.e., the angular power spectrum). We also assess the impact of noise on the accuracy of our SCNN estimators, demonstrating that noise at the level anticipated for Stage IV (CMB-S4) measurements would significantly bias parameter estimation for SCNNs trained on noiseless simulated data, and necessitate modeling the noise in the training data. 
    more » « less
  2. Abstract Axion-like particles (ALPs) can form a network of cosmic strings and domain walls that survives after recombination and leads to anisotropic birefringence of the cosmic microwave background (CMB). In addition to studying cosmic strings, we clarify and emphasize how the formation of ALP-field domain walls impacts the cosmic birefringence signal; these observations provide a unique way of probing ALPs with masses in the range 3 H 0 ≲ m a ≲ 3 H cmb . Using measurements of CMB birefringence from several telescopes, we find no evidence for axion-defect-induced anisotropic birefringence of the CMB. We extract constraints on the model parameters that include the ALP mass m a , ALP-photon coupling 𝒜 ∝ g aγγ f a , the domain wall number N dw , and parameters characterizing the abundance and size of defects in the string-wall network. Considering also recent evidence for isotropic CMB birefringence, we find it difficult to accommodate this with the non-detection of anisotropic birefringence under the assumption that the signal is generated by an ALP defect network. 
    more » « less
  3. A bstract We study axion strings of hyperlight axions coupled to photons. Hyperlight axions — axions lighter than Hubble at recombination — are a generic prediction of the string axiverse. These axions strings produce a distinct quantized polarization rotation of CMB photons which is $$ \mathcal{O} $$ O ( α em ). As the CMB light passes many strings, this polarization rotation converts E-modes to B-modes and adds up like a random walk. Using numerical simulations we show that the expected size of the final result is well within the reach of current and future CMB experiments through the measurement of correlations of CMB B-modes with E- and T-modes. The quantized polarization rotation angle is topological in nature and can be seen as a geometric phase. Its value depends only on the anomaly coefficient and is independent of other details such as the axion decay constant. Measurement of the anomaly coefficient by measuring this rotation will provide information about the UV theory, such as the quantization of electric charge and the value of the fundamental unit of charge. The presence of axion strings in the universe relies only on a phase transition in the early universe after inflation, after which the string network rapidly approaches an attractor scaling solution. If there are additional stable topological objects such as domain walls, axions as heavy as 10 − 15 eV would be accessible. The existence of these strings could also be probed by measuring the relative polarization rotation angle between different images in gravitationally lensed quasar systems. 
    more » « less
  4. null (Ed.)
    A bstract We explore the cosmological consequences of the superconductivity of QCD axion strings. Axion strings can support a sizeable chiral electric current and charge density, which alters their early universe dynamics. We examine the possibility that shrinking axion string loops can become effectively stable remnants called vortons, supported by the repulsive electromagnetic force of the string current. We find that vortons in our scenario are generically unstable, and so do not pose a cosmological difficulty. Furthermore, if a primordial magnetic field (PMF) exists in the early universe, a large current is induced on axion strings, creating a significant drag force from interactions with the surrounding plasma. As a result, the strings are slowed down, which leads to an orders of magnitude enhancement in the number of strings per Hubble volume. Finally, we study potential implications for the QCD axion relic abundance. The QCD axion window is shifted by orders of magnitude in some parts of our parameter space. 
    more » « less
  5. A bstract Strong (sublattice or tower) formulations of the Weak Gravity Conjecture (WGC) imply that, if a weakly coupled gauge theory exists, a tower of charged particles drives the theory to strong coupling at an ultraviolet scale well below the Planck scale. This tower can consist of low-spin states, as in Kaluza-Klein theory, or high-spin states, as with weakly-coupled strings. We provide a suggestive bottom-up argument based on the mild p -form WGC that, for any gauge theory coupled to a fundamental axion through a θF ∧ F term, the tower is a stringy one. The charge-carrying string states at or below the WGC scale gM Pl are simply axion strings for θ , with charged modes arising from anomaly inflow. Kaluza-Klein theories evade this conclusion and postpone the appearance of high-spin states to higher energies because they lack a θF ∧ F term. For abelian Kaluza-Klein theories, modified arguments based on additional abelian groups that interact with the Kaluza-Klein gauge group sometimes pinpoint a mass scale for charged strings. These arguments reinforce the Emergent String and Distant Axionic String Conjectures. We emphasize the unproven assumptions and weak points of the arguments, which provide interesting targets for further work. In particular, a sharp characterization of when gauge fields admit θF ∧ F couplings and when they do not would be immensely useful for particle phenomenology and for clarifying the implications of the Weak Gravity Conjecture. 
    more » « less