Volunteered sharing of resources is often observed in response to disaster events. During evacuations the sharing of resources and vehicles is a crucial mechanism for expanding critical capacity and enabling inclusive disaster response. This paper examines the complexity of rideshare decision-making in the wake of simultaneous emergencies. Specifically, the need for physical distancing measures during the coronavirus (COVID-19) pandemic complicates face-to-face resource sharing between strangers. The ability of on-demand ridesharing to provide emergency transportation to individuals without access to alternatives calls for an understanding of how evacuees weigh risks of contagion against benefits of spontaneous resource sharing. In this research, we examine both sociodemographic and situational factors that contribute to a willingness to share flood evacuation rides with strangers during the COVID-19 pandemic. We hypothesize that the willingness to share is significantly correlated with traditional emergency resource sharing motivations and current COVID-19 risk factors. To test these hypotheses, we distributed an online survey during the pandemic surge in July 2020 to 600 individuals in three midwestern and three southern states in the United States with high risk of flooding. We estimate a random parameter multinomial logit model to determine the willingness to share a ride as a driver or passenger. Our findings show that willingness to share evacuation rides is associated with individual sociodemographics (such as being female, under 36 years old, Black, or republican-identifying) and the social environment (such as households with children, social network proximity, and neighborly sharing attitudes). Moreover, our findings suggest higher levels of income, COVID-19 threat perception, evacuation fear, and household preparedness all correspond with a lower willingness to share rides. We discuss the broader implications of emergency on-demand mobility during concurrent disasters to formulate strategies for transportation agencies and on-demand ridehailing providers.
more »
« less
This content will become publicly available on December 1, 2025
Improving community resilience to disrupted food access: Empirical spatio-temporal analysis of volunteer-based crowdsourced food delivery
Unplanned disaster events can greatly disrupt access to essential resources, with calamitous outcomes for already vulnerable households. This is particularly challenging when concurrent extreme events affect both the ability of households to travel and the functioning of traditional transportation networks that supply resources. This paper examines the use of volunteer-based crowdsourced food delivery as a community resilience tactic to improve food accessibility during overlapping disruptions with lasting effects, such as the COVID-19 pandemic and climate disasters. The study uses large-scale spatio-temporal data (n = 28,512) on crowdsourced food deliveries in Houston, TX, spanning from 2020 through 2022, merged with data on community demographics and significant disruptive events occurring in the two-year timespan. Three research lenses are applied to understand the effectiveness of crowdsourced food delivery programs for food access recovery: 1) geographic analysis illustrates hot spots of demand and impacts of disasters on requests for food assistance within the study area; 2) linear spatio-temporal modeling identifies a distinction between shelter-in-place emergencies and evacuation emergencies regarding demand for food assistance; 3) structural equation modeling identifies socially vulnerable identity clusters that impact requests for food assistance. The findings from the study suggest that volunteerbased crowdsourced food delivery adds to the resilience of food insecure communities, supporting its effectiveness in serving its intended populations. The paper contributes to the literature by illustrating how resilience is a function of time and space, and that similarly, there is value in a dynamic representation of community vulnerability. The results point to a new approach to resource recovery following disaster events by shifting the burden of transportation from resource-seekers and traditional transportation systems to home delivery by a crowdsourced volunteer network.
more »
« less
- Award ID(s):
- 1847537
- PAR ID:
- 10617026
- Publisher / Repository:
- Journal of Transport Geography
- Date Published:
- Journal Name:
- Journal of Transport Geography
- Volume:
- 121
- Issue:
- C
- ISSN:
- 0966-6923
- Page Range / eLocation ID:
- 104018
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Access after disasters to resources such as food poses planning problems that affect millions of people each year. Understanding how disasters disrupt and alter food access during the initial steps of the recovery process provides new evidence to inform both food system and disaster planning. This research takes a supply-side focus and explores the results from a survey of food retailers after Hurricane Harvey in three Texas counties. The survey collected information on how the disaster affected a store’s property, people, and products and the length of time a store was closed, had reduced hours, and stopped selling fresh food items. We find that a focus only on store closures and property damage would underestimate the number of days residents have limited fresh food access by nearly two weeks. Further, stores in lower-income communities with chronic low-access to supermarkets (food deserts) were closed longer than other stores, potentially compounding pre-existing inequalities. We conclude that to plan for a more equitable food supply post-disaster, planners should embrace more dimensions of access, encourage retailer mitigation, and assess the types of retailers and their distribution within their communities. This mission includes social science collections related to models for predicting days to restoration of food access after a disaster. These collections include the programed workflow to replicated results for the journal article: Rosenheim, Nathanael, Maria Watson, John Cassels Connors, Mastura Safayet, Walter Gillis Peacock. “Food Access After Disasters: A Multidimensional View of Restoration After Hurricane Harvey”. Journal of the American Planning Association. doi.org/0.1080/01944363.2023.2284160Food insecurity is a chronic problem in the United States that annually affects over 40 million people under normal conditions. This difficult reality can dramatically worsen after disasters. Such events can disrupt both the supply and demand sides of food systems, restricting food distribution and access precisely when households are in a heightened need for food assistance. Often, retailers and food banks must react quickly to meet local needs under difficult post-disaster circumstances. Residents of Harris County and Southeast Texas experienced this problem after Hurricane Harvey made landfall on the Texas Gulf Coast in August 2017. The primary data collected by this project relate specifically to the supply side. The data attempt to identify factors that impacted the ability of suppliers to help ensure access to food, with a focus on fresh food access. Factors included impacts to people, property and products due to hurricane-related damage to infrastructure. Two types of food suppliers were the foci of this research: food aid agencies and food retailers. The research team examined food aid agencies in Southeast Texas with data collection methods that included secondary data analysis, a focus group and an online survey. The second population studied was food retailers with in-person surveys with store managers. Food retailers were randomly sampled in three Texas counties: Jefferson, Orange, and Harris. The data collection methods resulted in 32 food aid agency online survey responses and 210 completed food retail in-person surveys. Data were collected five to eight months after the event, which helped to increase the reliability and validity of the data. The time-sensitive nature of post-disaster data requires research teams to quickly organize their efforts before entering the field. The purpose of this project archive is to share the primary data collected, document methods, and to help future research teams reduce the amount of time needed for project development and reporting. This archive does not contain Personally or Business Identifiable Information.more » « less
-
Food security can be threatened by extreme natural hazard events for households of all social classes within a community. To address food security issues following a natural disaster, the recovery of several elements of the built environment within a community, including its building portfolio, must be considered. Building portfolio restoration is one of the most challenging elements of recovery owing to the complexity and dimensionality of the problem. This study introduces a stochastic scheduling algorithm for the identification of optimal building portfolio recovery strategies. The proposed approach provides a computationally tractable formulation to manage multi-state, large-scale infrastructure systems. A testbed community modeled after Gilroy, California, is used to illustrate how the proposed approach can be implemented efficiently and accurately to find the near-optimal decisions related to building recovery following a severe earthquake.more » « less
-
Food security can be threatened by extreme natural hazard events for households of all social classes within a community. To address food security issues following a natural disaster, the recovery of several elements of the built environment within a community, including its building portfolio, must be considered. Building portfolio restoration is one of the most challenging elements of recovery owing to the complexity and dimensionality of the problem. This study introduces a stochastic scheduling algorithm for the identification of optimal building portfolio recovery strategies. The proposed approach provides a computationally tractable formulation to manage multi-state, large-scale infrastructure systems. A testbed community modeled after Gilroy, California, is used to illustrate how the proposed approach can be implemented efficiently and accurately to find the near-optimal decisions related to building recovery following a severe earthquake.more » « less
-
Abstract Objective Policy-makers and practitioners have a need to assess community resilience in disasters. Prior efforts conflated resilience with community functioning, combined resistance and recovery (the components of resilience), and relied on a static model for what is inherently a dynamic process. We sought to develop linked conceptual and computational models of community functioning and resilience after a disaster. Methods We developed a system dynamics computational model that predicts community functioning after a disaster. The computational model outputted the time course of community functioning before, during, and after a disaster, which was used to calculate resistance, recovery, and resilience for all US counties. Results The conceptual model explicitly separated resilience from community functioning and identified all key components for each, which were translated into a system dynamics computational model with connections and feedbacks. The components were represented by publicly available measures at the county level. Baseline community functioning, resistance, recovery, and resilience evidenced a range of values and geographic clustering, consistent with hypotheses based on the disaster literature. Conclusions The work is transparent, motivates ongoing refinements, and identifies areas for improved measurements. After validation, such a model can be used to identify effective investments to enhance community resilience. ( Disaster Med Public Health Preparedness . 2018;12:127–137)more » « less
An official website of the United States government
