The Segment Anything Model (SAM) is a recently proposed prompt-based segmentation model in a generic zero-shot segmentation approach. With the zero-shot segmentation capacity, SAM achieved impressive flexibility and precision on various segmentation tasks. However, the current pipeline requires manual prompts during the inference stage, which is still resource intensive for biomedical image segmentation. In this paper, instead of using prompts during the inference stage, we introduce a pipeline that utilizes the SAM, called all-in-SAM, through the entire AI development workflow (from annotation generation to model finetuning) without requiring manual prompts during the inference stage. Specifically, SAM is first employed to generate pixel-level annotations from weak prompts (e.g., points, bounding box). Then, the pixel-level annotations are used to finetune the SAM segmentation model rather than training from scratch. Our experimental results reveal two key findings: 1) the proposed pipeline surpasses the state-of-the-art (SOTA) methods in a nuclei segmentation task on the public Monuseg dataset, and 2) the utilization of weak and few annotations for SAM finetuning achieves competitive performance compared to using strong pixel-wise annotated data. 
                        more » 
                        « less   
                    This content will become publicly available on February 1, 2026
                            
                            IDCC-SAM: A Zero-Shot Approach for Cell Counting in Immunocytochemistry Dataset Using the Segment Anything Model
                        
                    
    
            Cell counting in immunocytochemistry is vital for biomedical research, supporting the diagnosis and treatment of diseases such as neurological disorders, autoimmune conditions, and cancer. However, traditional counting methods are manual, time-consuming, and error-prone, while deep learning solutions require costly labeled datasets, limiting scalability. We introduce the Immunocytochemistry Dataset Cell Counting with Segment Anything Model (IDCC-SAM), a novel application of the Segment Anything Model (SAM), designed to adapt the model for zero-shot-based cell counting in fluorescent microscopic immunocytochemistry datasets. IDCC-SAM leverages Meta AI’s SAM, pre-trained on 11 million images, to eliminate the need for annotations, enhancing scalability and efficiency. Evaluated on three public datasets (IDCIA, ADC, and VGG), IDCC-SAM achieved the lowest Mean Absolute Error (26, 28, 52) on VGG and ADC and the highest Acceptable Absolute Error (28%, 26%, 33%) across all datasets, outperforming state-of-the-art supervised models like U-Net and Mask R-CNN, as well as zero-shot benchmarks like NP-SAM and SAM4Organoid. These results demonstrate IDCC-SAM’s potential to improve cell-counting accuracy while reducing reliance on specialized models and manual annotations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2152117
- PAR ID:
- 10617123
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Bioengineering
- Volume:
- 12
- Issue:
- 2
- ISSN:
- 2306-5354
- Page Range / eLocation ID:
- 184
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The segment anything model (SAM) was released as a foundation model for image segmentation. The promptable segmentation model was trained by over 1 billion masks on 11M licensed and privacy-respecting images. The model supports zero-shot image segmentation with various seg- mentation prompts (e.g., points, boxes, masks). It makes the SAM attractive for medical image analysis, especially for digital pathology where the training data are rare. In this study, we eval- uate the zero-shot segmentation performance of SAM model on representative segmentation tasks on whole slide imaging (WSI), including (1) tumor segmentation, (2) non-tumor tissue segmen- tation, (3) cell nuclei segmentation. Core Results: The results suggest that the zero-shot SAM model achieves remarkable segmentation performance for large connected objects. However, it does not consistently achieve satisfying performance for dense instance object segmentation, even with 20 prompts (clicks/boxes) on each image. We also summarized the identified limitations for digital pathology: (1) image resolution, (2) multiple scales, (3) prompt selection, and (4) model fine-tuning. In the future, the few-shot fine-tuning with images from downstream pathological seg- mentation tasks might help the model to achieve better performance in dense object segmentation.more » « less
- 
            Tumor segmentation in medical imaging is critical for diagnosis, treatment planning, and prognosis, yet remains challenging due to limited annotated data, tumor heterogeneity, and modality-specific complexities in CT, MRI, and histopathology. Although the Segment Anything Model (SAM) shows promise as a zero-shot learner, it struggles with irregular tumor boundaries and domain-specific variations. We introduce the Adaptive Unified Segmentation Anything Model (AUSAM). This novel framework extends SAM’s capabilities for multi-modal tumor segmentation by integrating an intelligent prompt module, dynamic sampling, and stage-based thresholding. Specifically, clustering-based prompt learning (DBSCAN for CT/MRI and K-means for histopathology) adaptively allocates prompts to capture challenging tumor regions, while entropy-guided sampling and dynamic thresholding systematically reduce annotation requirements and computational overhead. Validated on diverse benchmarks—LiTS (CT), FLARE 2023 (CT/MRI), ORCA, and OCDC (histopathology)—AUSAM achieves state-of-the-art Dice Similarity Coefficients (DSC) of 94.25%, 91.84%, 87.59%, and 91.84%, respectively, with significantly reduced data usage. As the first framework to adapt SAM for multi-modal tumor segmentation, AUSAM sets a new standard for precision, scalability, and efficiency. It is offered in two variants: AUSAM-Lite for resource-constrained environments and AUSAM-Max for maximum segmentation accuracy, thereby advancing medical imaging and clinical decision-making.more » « less
- 
            This paper assesses trending AI foundation models, especially emerging computer vision foundation models and their performance in natural landscape feature segmentation. While the term foundation model has quickly garnered interest from the geospatial domain, its definition remains vague. Hence, this paper will first introduce AI foundation models and their defining characteristics. Built upon the tremendous success achieved by Large Language Models (LLMs) as the foundation models for language tasks, this paper discusses the challenges of building foundation models for geospatial artificial intelligence (GeoAI) vision tasks. To evaluate the performance of large AI vision models, especially Meta’s Segment Anything Model (SAM), we implemented different instance segmentation pipelines that minimize the changes to SAM to leverage its power as a foundation model. A series of prompt strategies were developed to test SAM’s performance regarding its theoretical upper bound of predictive accuracy, zero-shot performance, and domain adaptability through fine-tuning. The analysis used two permafrost feature datasets, ice-wedge polygons and retrogressive thaw slumps because (1) these landform features are more challenging to segment than man-made features due to their complicated formation mechanisms, diverse forms, and vague boundaries; (2) their presence and changes are important indicators for Arctic warming and climate change. The results show that although promising, SAM still has room for improvement to support AI-augmented terrain mapping. The spatial and domain generalizability of this finding is further validated using a more general dataset EuroCrops for agricultural field mapping. Finally, we discuss future research directions that strengthen SAM’s applicability in challenging geospatial domains.more » « less
- 
            In this paper, a Segment Anything Model (SAM)-based pedestrian infrastructure segmentation workflow is designed and optimized, which is capable of efficiently processing multi-sourced geospatial data, including LiDAR data and satellite imagery data. We used an expanded definition of pedestrian infrastructure inventory, which goes beyond the traditional transportation elements to include street furniture objects that are important for accessibility but are often omitted from the traditional definition. Our contributions lie in producing the necessary knowledge to answer the following three questions. First, how can mobile LiDAR technology be leveraged to produce comprehensive pedestrian-accessible infrastructure inventory? Second, which data representation can facilitate zero-shot segmentation of infrastructure objects with SAM? Third, how well does the SAM-based method perform on segmenting pedestrian infrastructure objects? Our proposed method is designed to efficiently create pedestrian-accessible infrastructure inventory through the zero-shot segmentation of multi-sourced geospatial datasets. Through addressing three research questions, we show how the multi-mode data should be prepared, what data representation works best for what asset features, and how SAM performs on these data presentations. Our findings indicate that street-view images generated from mobile LiDAR point-cloud data, when paired with satellite imagery data, can work efficiently with SAM to create a scalable pedestrian infrastructure inventory approach with immediate benefits to GIS professionals, city managers, transportation owners, and walkers, especially those with travel-limiting disabilities, such as individuals who are blind, have low vision, or experience mobility disabilities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
