skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relationship of Atmospheric Nitrogen Deposition to Soil Nitrogen Cycling Along an Elevation Gradient in the Colorado Front Range
Abstract Microbial processing of atmospheric nitrogen (N) deposition regulates the retention and mobilization of N in soils, with important implications for water quality. Understanding the links between N deposition, microbial communities, N transformations, and water quality is critical as N deposition shifts toward reduced N and remains persistently high in many regions. Here, we investigated these connections along an elevation transect in the Colorado Front Range. Although rates of N deposition and pools of extractable N increased down the elevation transect, soil microbial communities and N transformation rates did not follow clear elevational patterns. The subalpine microbial community was distinct, corresponding to a high C:N ratio and low pH, while the microbial communities at the lower elevation sites were all very similar. Net nitrification, mineralization, and nitrification potential rates were highest at the Plains (1,700 m) and Montane (2,527 m) sites, suggesting that these ecosystems mobilize N. In contrast, the net immobilization of N observed at the Foothills (1,978 m) and Subalpine (3,015 m) sites suggests that these ecosystems retain N deposition. The contrast in N transformation rates between the plains and foothills, both of which receive elevated N deposition, may be due to spatial heterogeneity not captured in this study and warrants further investigation. Stream N concentrations from the subalpine to the foothills were consistently low, indicating that these soils are currently able to process and retain N deposition, but this may be disrupted if drought, wildfire, or land‐use change alter the ability of the soils to retain N.  more » « less
Award ID(s):
1331828
PAR ID:
10617208
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
John Wiley & Sons
Date Published:
Journal Name:
Earth's Future
Volume:
13
Issue:
1
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Anthropogenic nitrogen (N) deposition is unequally distributed across space and time, with inputs to terrestrial ecosystems impacted by industry regulations and variations in human activity. Soil carbon (C) content normally controls the fraction of mineralized N that is nitrified (ƒnitrified), affecting N bioavailability for plants and microbes. However, it is unknown whether N deposition has modified the relationships among soil C, net N mineralization, and net nitrification. To test whether N deposition alters the relationship between soil C and net N transformations, we collected soils from coniferous and deciduous forests, grasslands, and residential yards in 14 regions across the contiguous United States that vary in N deposition rates. We quantified rates of net nitrification and N mineralization, soil chemistry (soil C, N, and pH), and microbial biomass and function (as beta‐glucosidase (BG) andN‐acetylglucosaminidase (NAG) activity) across these regions. Following expectations, soil C was a driver ofƒnitrifiedacross regions, whereby increasing soil C resulted in a decline in net nitrification andƒnitrified. Theƒnitrifiedvalue increased with lower microbial enzymatic investment in N acquisition (increasing BG:NAG ratio) and lower active microbial biomass, providing some evidence that heterotrophic microbial N demand controls the ammonium pool for nitrifiers. However, higher total N deposition increasedƒnitrified, including for high soil C sites predicted to have lowƒnitrified, which decreased the role of soil C as a predictor ofƒnitrified. Notably, the drop in contemporary atmospheric N deposition rates during the 2020 COVID‐19 pandemic did not weaken the effect of N deposition on relationships between soil C andƒnitrified. Our results suggest that N deposition can disrupt the relationship between soil C and net N transformations, with this change potentially explained by weaker microbial competition for N. Therefore, past N inputs and soil C should be used together to predict N dynamics across terrestrial ecosystems. 
    more » « less
  2. null (Ed.)
    Understanding the dominant soil nitrogen (N) cycling processes in southern Appalachian forests is crucial for predicting ecosystem responses to changing N deposition and climate. The role of anaerobic nitrogen cycling processes in well-aerated soils has long been questioned, and recent N cycling research suggests it needs to be re-evaluated. We assessed gross and potential rates of soil N cycling processes, including mineralization, nitrification, denitrification, nitrifier denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) in sites representing a vegetation and elevation gradient in the U.S. Department of Agriculture (USDA) Forest Service Experimental Forest, Coweeta Hydrologic Laboratory in southwestern North Carolina, USA. N cycling processes varied among sites, with gross mineralization and nitrification being greatest in high-elevation northern hardwood forests. Gaseous N losses via nitrifier denitrification were common in all ecosystems but were greatest in northern hardwood. Ecosystem N retention via DNRA (nitrification-produced NO3 reduced to NH4) ranged from 2% to 20% of the total nitrification and was highest in the mixed-oak forest. Our results suggest the potential for gaseous N losses through anaerobic processes (nitrifier denitrification) are prevalent in well-aerated forest soils and may play a key role in ecosystem N cycling. 
    more » « less
  3. null (Ed.)
    In nitrogen (N)-limited terrestrial ecosystems, plants employ various strategies to acquire and conserve N, including translocation of N in perennial tissues and stimulation of N fixation in roots and soils. Switchgrass (Panicum virgatum) is a genotypically and phenotypically diverse perennial grass with two distinct ecotypes (lowland and upland) and numerous genotypes. It grows well in low-N soils, likely because of its ability to translocate N and to associate with N-fixing microbes, but little is known about variation in these traits among cultivars or even ecotypes. We measured N translocation, N fixation potential in roots and soils, soil net N mineralization, soil net nitrification, and biomass yields in 12 switchgrass cultivars grown in a replicated block experiment in southwestern Michigan, United States. Lowland cultivars had higher yields, rates of N translocation, soil net N mineralization, and N fixation potentials on washed, nonsterile roots, while upland cultivars exhibited higher N fixation potentials in root-free soil. N resorption efficiencies averaged 53 ± 5% (± standard error) for lowland versus 29 ± 3% for upland cultivars. Additionally, there were significant among-cultivar differences for all response variables except mineralization and nitrification, with differences likely explained by cultivar-specific physiologies and microbial communities. The ideal cultivar for biofuels is one that can maintain high yields with minimal fertilizer addition, and there appear to be several cultivars that meet these criteria. In addition, results suggest substantial N cycle differences among cultivars that might be exploited by breeders to create new or improved high-yielding, N-conserving switchgrass lines. 
    more » « less
  4. The goal of this project is to test the overarching hypothesis that positive feedback mechanisms involving changes in seasonal cycles that diminish N availability to plants such that plant N demand is not met by soil N availability in northern forests. Specifically, we hypothesize that increasing N demand by plants (induced by increasing temperatures, longer growing seasons, and other environmental changes) leads to greater N resorption by trees in autumn, increased C:N in litter, and greater net immobilization of N by soil microbes in the following spring. However, the timing of snowmelt and soil freezing in spring may further affect net mineralization and N availability for plants. These hypotheses are being tested with a combination of observational, experimental, and modeling approaches at Hubbard Brook Experimental Forest in New Hampshire: 1) measurements at 14 previously established sites along an elevation/aspect climate gradient; 2) litter and snow manipulation experiments at six sites along the climate gradient to create variation in soil climate conditions and microbial N immobilization during spring. We leveraged 14 sites previously established along an elevation and aspect-driven climate gradient at Hubbard Brook as a “natural climate experiment" to test our hypothesis that a positive feedback between N cycling during fall senescence and spring contributes to declining N availability in northern forests. This elevation gradient encompasses variation in mean annual air temperature of ~2.5 °C that is similar to the change projected to occur with climate change over the next 50–100 years in the northeastern U.S. There is relatively little variation in soils along the gradient. We are utilizing three sites at higher elevation (~550-660 m, north facing) and three sites at lower elevation (~375-500 m, south facing) for the litter and snow manipulation experiments to maximize the differences in temperature among the 14 sites. Litterbox manipulation: The objective of the litterfall manipulation experiment is to determine whether increases in autumn litter C:N ratios contribute to greater N immobilization by microbes and reductions in net mineralization and plant N uptake in spring, and ultimately, N oligotrophication in northern forest ecosystems. We applied early (low C:N litter that is lost from from hardwood foliage in the first two weeks of autumn) and late (high C:N litter that falls in the last two weeks of autumn) season litter in October 2022 that was collected in fall 2021 at rates equal to standing mass of litter (300 g m2). We also applied native litter that was collected from the forest floor of each intensive site to represent background levels of C:N in litter samples. This litter was applied to one litterbox at each of the six intensive sites. Following application of litter, we installed deer netting around and on top of each of the litterboxes to eliminate litter loss from wind. Soil samples were collected from these plots in November 2021, April 2022, May 2022, June 2022, November 2022, April 2023, May 2023, June 2023 and anlalysed for Nitrogen mineralization and nitrification, as described in the methods section. Snow manipulation: The objective of the snow manipulation experiment is to determine whether the timing of spring snowmelt, length of the spring, and soil freezing in spring affect microbial N immobilization, hydrologic losses, net mineralization, and plant N uptake. The snow manipulation treatment was conducted in the spring of 2022 and 2023. We manually halved (Removal treatment) or doubled (Addition treatment) snow water equivalent (SWE) in experimental plots in March of 2022 and 2023 to accelerate or delay by an average of one week, respectively, the onset of spring snowmelt. Soil Samples were collected from these plots in November 2021, April 2022, May 2022, June 2022, November 2022, April 2023, May 2023, June 2023 and analysed for Nitrogen mineralization and nitrification, as described in the methods section. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  5. Abstract BackgroundAnthropogenic activities have increased the inputs of atmospheric reactive nitrogen (N) into terrestrial ecosystems, affecting soil carbon stability and microbial communities. Previous studies have primarily examined the effects of nitrogen deposition on microbial taxonomy, enzymatic activities, and functional processes. Here, we examined various functional traits of soil microbial communities and how these traits are interrelated in a Mediterranean-type grassland administrated with 14 years of 7 g m−2year−1of N amendment, based on estimated atmospheric N deposition in areas within California, USA, by the end of the twenty-first century. ResultsSoil microbial communities were significantly altered by N deposition. Consistent with higher aboveground plant biomass and litter, fast-growing bacteria, assessed by abundance-weighted average rRNA operon copy number, were favored in N deposited soils. The relative abundances of genes associated with labile carbon (C) degradation (e.g.,amyAandcda) were also increased. In contrast, the relative abundances of functional genes associated with the degradation of more recalcitrant C (e.g.,mannanaseandchitinase) were either unchanged or decreased. Compared with the ambient control, N deposition significantly reduced network complexity, such as average degree and connectedness. The network for N deposited samples contained only genes associated with C degradation, suggesting that C degradation genes became more intensely connected under N deposition. ConclusionsWe propose a conceptual model to summarize the mechanisms of how changes in above- and belowground ecosystems by long-term N deposition collectively lead to more soil C accumulation. 
    more » « less