Unfolding-based single-stage ac-dc converters offer benefits in terms of efficiency and power density due to the low-frequency operation of the Unfolder, resulting in negligible switching losses. However, the operation of the Unfolder results in time-varying dc voltages at the input of the subsequent dc-dc converter, complicating its soft-switching analysis. The complication is further enhanced due to the nonlinear nature of the output capacitance ( Coss ) of MOSFETs employed in the dc-dc converter. Furthermore, unlike two-stage topologies with a constant dc-link voltage, as seen in high-frequency grid-tied converters, grid voltage fluctuations also impact the dc input voltages of the dc-dc converter in unfolding-based systems. This work comprehensively analyzes the soft-switching phenomenon in the T-type primary bridge-based dc-dc converter used in unfolding-based topologies, considering all the aforementioned challenges. An energy-based methodology is proposed to determine the minimum zero-voltage switching (ZVS) current and ZVS time during various switching transitions of the T-type bridge. It is shown that the existing literature on the ZVS analysis of the T-type bridge-based resonant dc-dc converter, relying solely on capacitive energy considerations, substantially underestimates the required ZVS current values, with errors reaching up to 50%. The proposed analysis is verified through both simulation and hardware testing. The hardware testing is conducted on a 20-kW 3- ϕ unfolding-based ac-dc converter designed for high-power electric vehicle battery charging applications. The ZVS analysis is verified at various grid angles with the proposed analysis ensuring a complete ZVS operation of the ac-dc system throughout the grid cycle.
more »
« less
This content will become publicly available on April 1, 2026
Optimized Timing Control for Leading-Edge Aligned Modulation of a T-Type Bridge in Unfolding-Based AC–DC Converters
T-type primary bridge-based resonant converters employed in unfolding-based single-stage ac–dc conversion systems commonly adopt a leading-edge aligned modulation strategy, as it facilitates zero-voltage switching (ZVS) throughout the grid cycle. However, the application of this modulation strategy can result in partial ZVS of the common-source mosfets within the T-type bridge. In this letter, we investigate the underlying reasoning of such partial ZVS, quantify the severity of the problem, and propose a mitigation solution. Specifically, an optimized leading-edge aligned modulation strategy is introduced, incorporating an intentional staggered time delay for the turn-off of the common-source mosfets during the leading edge. The proposed modulation strategy is validated through hardware testing on a 20-kW unfolding-based ac–dc conversion system.
more »
« less
- Award ID(s):
- 2239169
- PAR ID:
- 10617218
- Publisher / Repository:
- IEEE Transactions on Power Electronics
- Date Published:
- Journal Name:
- IEEE Transactions on Power Electronics
- Volume:
- 40
- Issue:
- 4
- ISSN:
- 0885-8993
- Page Range / eLocation ID:
- 4716 to 4721
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To optimize the utilization of a T-type bridge structure in resonant converters, one must thoroughly examine the soft-switching criteria specific to the T-type configuration. This work proposes an energy-based method to determine the softs-witching requirements of a T-type bridge during its various switching transitions. The study estimates the minimum required zero voltage switching (ZVS) current while considering the nonlinearity and voltage dependence associated with the output capacitance of MOSFETs. Moreover, this paper demonstrates that existing studies on ZVS analysis for T-type bridge-based resonant dc-dc converters, which rely only on capacitive energy considerations, significantly underestimate the necessary ZVS current values, with errors as high as 50%. Simulation and hardware results on a T-type primary bridge circuit validate the accuracy of the proposed minimum ZVS current calculation. Hardware tests are conducted on a T-type bridge in a 20 kW electric vehicle charger.more » « less
-
This paper proposes a generalized Gallium Nitride (GaN) based modular multiport multilevel flying capacitor architecture. In other words, the attractive flying capacitor multilevel (FCML) design and the full-bridge unfolding circuit are employed to develop a multiport multilevel converter architecture that fits various applications. Each module can be designed to contain any combination of AC and DC ports connected through DC-to-DC and DC-to-AC power conversion paths. These conversion paths are FCML topologies that can be designed with any number of levels; the DC-to-AC paths incorporate the full-bridge unfolding circuit. Two example prototypes with open-loop control, three-port and four-port, have verified this generalized architecture. A single module 3 kW three-port four-level prototype with two DC ports and an AC port has achieved a compact size of 11.6 in 3 (4.8 in ×4.3 in × 0.56 in) and a high power density of 258.6 W/in 3 . The three ports are connected through DC-to-AC and DC-to-DC paths that have achieved peak efficiencies of 98.2% and 99.43%, respectively. The total harmonic distortion (THD) of the AC port's voltage and current are 1.26% and 1.23%, respectively. It operates at a high switching frequency of 120 kHz because of the GaN switches and has an actual frequency (inductor's ripple frequency) of 360 kHz thanks to the frequency multiplication effect of the FCML. The four-port prototype contains three DC ports and an AC port and achieved similar high figures of merit. These experimental results of the two prototypes of high efficiency, power density, and compact size are presented in this article and highlight this architecture's promising potential. The choice of the number of modules, ports, and levels depends on the application and its specification; therefore, this proposed generalized structure may serve as a reference design approach for various applications of interest.more » « less
-
Unfolder-based quasi-single-stage ac-dc power converter has been widely used for high-power electric vehicle (EV) charging systems for its high efficiency and power density. However, the resonance between the grid inductance (impedance) and the capacitors on the soft-dc-link of the converter impacts the system stability and significantly limits the system control bandwidth and dynamic response performance. A quasi-single-stage ac-dc converter with unfolder plus T-bridge series resonant converter (T-SRC) is studied in this work. The small-signal modeling and plant transfer function derivation of the T-SRC is presented in this paper. A damping filter design using the extra element theorem (EET) is then proposed to achieve high- bandwidth and stable operation of the quasi-single-stage ac-dc converter. Simulation and hardware results from an 18 kW module for high-power EV charging are provided to validate the proposed modeling and damping filter design.more » « less
-
In this work, a 25 kW all silicon carbide (SiC) series-resonant converter (SRC) design is proposed to enable a single stage dc to dc conversion from 3kV to 540V (±270V) for future electric aircraft applications. The proposed SRC consists of a 3-level neutral-point-clamped (NPC) converter using 3.3kV discrete SiC MOSFETs on the primary side, a H-bridge converter using 900V SiC MOSFET modules on the secondary side and a high frequency (HF) transformer. The detailed design methods for the SRC power stage and the HF transformer are presented. Especially, a tradeoff between the complexity for the cooling system and the need for power density is addressed in the transformer design, leading to a novel multi-layer winding layout. To validate the effectiveness of the proposed SRC design, a converter prototype has been developed and comprehensive experimental studies are performed.more » « less
An official website of the United States government
