skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 12, 2026

Title: Characterization of F-region neutral wind response times and its controlling factors during substorms
Ion-neutral coupling is responsible for dissipating energy deposited into the high-latitude ionosphere during geomagnetically active periods. The neutral wind response time, or the ion-neutral coupling efficiency, is not well characterized, with a wide range of reported response times. Additionally, how this coupling efficiency varies with geomagnetic activity level is not well understood, with few studies addressing the impact of geomagnetic activity level on neutral wind response time. In this study, a statistical analysis of the neutral wind response time during substorm periods is performed. We use data from Scanning Doppler Imagers (SDIs) and the Poker Flat Incoherent Scatter Radar (PFISR) to calculate the neutral wind response time using the new weighted windowed time-lagged correlation method. Substorm events were found using SuperMAG substorm lists and All Sky Imagers (ASIs). This statistical analysis resulted in 23 substorm events, with an average response time of 16 min. To determine the controlling factors of this response time, geomagnetic and ionospheric parameters, such as IMF strength and orientation, SYM/H index, AE index, and electron density, are investigated for the statistical substorm set. A superposed epoch analysis of the parameters is performed to determine average geospace conditions required for fast neutral wind responses. It was found that quiet-time conditions in AE and SYM-H indices, a southward turning of IMF around 1.5 h before substorm onset time, and large electron densities lead to faster neutral wind response times. Based on the geomagnetic indices results, it was suggested that thermospheric pre-conditioning may play a role in neutral wind response times.  more » « less
Award ID(s):
2332311
PAR ID:
10617272
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
12
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The 400 worst‐case severe environments for surface charging detected at Los Alamos National Laboratory satellites during the years of 1990–2005 as binned by the definitions of four criteria developed by Matéo‐Vélez et al. (2018,https://doi.org/10.1002/2017sw001689) and the solar wind and Interplanetary Magnetic Field (IMF) parameters and geomagnetic activity indices are analyzed. The conducted analysis shows that only Auroral Electrojet/Auroral Lower index determines the highest risk for severe environments for surface charging to happen. The presence of a substorm with the southward turning pattern in IMFindicates that the environment can be severe for surface charging to occur but this environment will not depend on whether a substorm was moderate or intense. No clear dependence on IMFis found for risk to a severe environment to occur. Appearances of severe environments for surface charging do not necessarily require high values ofKp(Planetarische Kennziffer) and no storm is needed for such an event to be detected. Among solar wind parameters, solar wind velocityis directly related to the highest risk of severe environments, dependent on thevalue; and number densityis of no importance. Two criteria for severe environment events based on the enhancements of low energy particle fluxes exhibit clearer dependencies on the solar wind and IMF parameters and geomagnetic activity indices with more distinct patterns in their time history. 
    more » « less
  2. Abstract Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. Here we present superposed epoch analyses of large nighttime MPEs (|dB/dt| ≥ 6 nT/s) observed during 2015 and 2017 at five stations in Arctic Canada ranging from 64.7° to 75.2° in corrected geomagnetic latitude (MLAT) as functions of the interplanetary magnetic field (IMF), solar wind dynamic pressure, density, and velocity, and the SML, SMU, and SYM/H geomagnetic activity indices. Analyses were produced for premidnight and postmidnight events and for three ranges of time after the most recent substorm onset: (a) 0–30 min, (b) 30–60 min, and (c) >60 min. Of the solar wind and IMF parameters studied, only the IMF Bz component showed any consistent temporal variations prior to MPEs: a 1–2 h wide 1–3 nT negative minimum at all stations beginning ∼30–80 min before premidnight MPEs, and minima that were less consistent but often deeper before postmidnight MPEs. Median, 25th, and 75th percentile SuperMAG auroral indices SML (SMU) showed drops (rises) before pre‐ and post‐midnight type A MPEs, but most of the MPEs in categories B and C did not coincide with large‐scale peaks in ionospheric electrojets. Median SYM/H indices were flat near −30 nT for premidnight events and showed no consistent temporal association with any MPE events. More disturbed values of IMF Bz, Psw, Nsw, SML, SMU, and SYM/H appeared postmidnight than premidnight. 
    more » « less
  3. Abstract This paper reports a search for Higgs boson pair (hh) production in association with a vector boson ($$W\; {\text {o}r}\; Z$$ W o r Z ) using 139 fb$$^{-1}$$ - 1 of proton–proton collision data at$$\sqrt{s}=13\,\text {TeV}$$ s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically ($$W\rightarrow \ell \nu ,\, Z\rightarrow \ell \ell ,\nu \nu $$ W ν , Z , ν ν with$$\ell =e, \mu $$ = e , μ ) and the Higgs bosons each decay into a pair ofb-quarks. It targetsVhhsignals from both non-resonanthhproduction, present in the Standard Model (SM), and resonanthhproduction, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonantVhhproduction when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonanceH, in the mass range 260–1000 GeV, that decays intohh, and the other is the production of a heavier neutral pseudoscalar resonanceAthat decays into aZboson andHboson, where theAboson mass is 360–800 GeV and theHboson mass is 260–400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models. 
    more » « less
  4. Abstract Let 𝜋 and π \pi^{\prime}be cuspidal automorphic representations of GL ( n ) \mathrm{GL}(n)and GL ( n ) \mathrm{GL}(n^{\prime})with unitary central characters.We establish a new zero-free region for all GL ( 1 ) \mathrm{GL}(1)-twists of the Rankin–Selberg 𝐿-function L ( s , π × π ) L(s,\pi\times\pi^{\prime}), generalizing Siegel’s celebrated work on Dirichlet 𝐿-functions.As an application, we prove the first unconditional Siegel–Walfisz theorem for the Dirichlet coefficients of L ( s , π × π ) / L ( s , π × π ) -L^{\prime}(s,\pi\times\pi^{\prime})/L(s,\pi\times\pi^{\prime}).Also, for n 8 n\leq 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power 𝐿-functions L ( s , π , Sym n χ ) L(s,\pi,\mathrm{Sym}^{n}\otimes\chi)of any cuspidal automorphic representation of GL ( 2 ) \mathrm{GL}(2). 
    more » « less
  5. Abstract Our current knowledge of the geomagnetic poleward and equatorward boundary dynamics is limited, particularly, how deep those two latitudinal boundaries can extend into lower geomagnetic latitudes during magnetic storms. We want to understand the motion of the boundary because it is important in terms of the location and magnitude of the effects of geomagnetic disturbances associated with storms on the ground. In this study we derive spherical elementary ionospheric currents from ground magnetometer arrays covering North America and Greenland during six magnetic storms in 2015 and 2018. With two dimensional maps of the auroral region current, we select the equatorward boundary of the region 2 currents by‐eye and fit the boundary with an ellipse to derive the location of the equatorward boundary at magnetic midnight. We have obtained over 500 boundaries and find that the midnight boundary location varies between 45° and 66° magnetic latitude. We examine the influence of the interplanetary magnetic field (IMF), solar wind plasma, and geomagnetic indices on the location of the magnetic midnight equatorial boundary and find that the equatorial boundary location is best correlated with the IMF Bz, VBz, and the Sym‐H index. We demonstrate that as the Bz component becomes more negative, the magnitude of VBz increases, and the magnitude of the Sym‐H index increases, the magnetic midnight equatorial boundary shifts equatorward during periods of moderate to high geomagnetic activity. 
    more » « less