Abstract. Supply of iron (Fe) to the surface ocean supports primary productivity, and while hydrothermal input of Fe to the deep ocean is knownto be extensive it remains poorly constrained. Global estimates of hydrothermal Fe supply rely on using dissolved Fe (dFe) toexcess He (xs3He) ratios to upscale fluxes, but observational constraints on dFe/xs3He may be sensitive toassumptions linked to sampling and interpolation. We examined the variability in dFe/xs3He using two methods of estimation, forfour vent sites with different geochemistry along the Mid-Atlantic Ridge. At both Rainbow and TAG, the plume was sampled repeatedly and the range ofdFe/xs3He was 4 to 63 and 4 to 87 nmol:fmol, respectively, primarily due to differences in plume age. To account for backgroundxs3He and shifting plume position, we calibrated He values using contemporaneous dissolved Mn (dMn). Applying thisapproach more widely, we found dFe/xs3He ratios of 12, 4–8, 4–44, and 4–86 nmol fmol−1 for the Menez Gwen, LuckyStrike, Rainbow, and TAG hydrothermal vent sites, respectively. Differences in plume dFe/xs3He across sites were not simplyrelated to the vent endmember Fe and He fluxes. Within 40 km of the vents, the dFe/xs3He ratios decreased to3–38 nmol fmol−1, due to the precipitation and subsequent settling of particulates. The ratio of colloidal Fe to dFe wasconsistently higher (0.67–0.97) than the deep N. Atlantic (0.5) throughout both the TAG and Rainbow plumes, indicative of Fe exchangebetween dissolved and particulate phases. Our comparison of TAG and Rainbow shows there is a limit to the amount of hydrothermal Fe releasedfrom vents that can form colloids in the rising plume. Higher particle loading will enhance the longevity of the Rainbow hydrothermal plume withinthe deep ocean assuming particles undergo continual dissolution/disaggregation. Future studies examining the length of plume pathways required toescape the ridge valley will be important in determining Fe supply from slow spreading mid-ocean ridges to the deep ocean, along with thefrequency of ultramafic sites such as Rainbow. Resolving the ridge valley bathymetry and accounting for variability in vent sources in globalbiogeochemical models will be key to further constraining the hydrothermal Fe flux.
more »
« less
The macronutrient and micronutrient (iron and manganese) content of icebergs
Abstract. Ice calved from the Antarctic and Greenland ice sheets or tidewater glaciers ultimately melts in the ocean, contributing to sea-level rise and potentially affecting marine biogeochemistry. Icebergs have been described as ocean micronutrient fertilizing agents and biological hotspots due to their potential roles as platforms for marine mammals and birds. Icebergs may be especially important fertilizing agents in the Southern Ocean, where low availability of the micronutrients iron and manganese extensively limits marine primary production. Whilst icebergs have long been described as a source of iron to the ocean, their nutrient load is poorly constrained and it is unclear if there are regional differences. Here we show that 589 ice fragments collected from calved ice in contrasting regions spanning the Antarctic Peninsula; Greenland; and smaller tidewater systems in Svalbard, Patagonia, and Iceland have similar (micro)nutrient concentrations with limited or no significant differences between regions. Icebergs are a minor or negligible source of macronutrients to the ocean with low concentrations of NOx- (NO3-+NO2-; median of 0.51 µM), PO43- (median of 0.04 µM), and dissolved Si (dSi; median of 0.02 µM). In contrast, icebergs deliver elevated concentrations of dissolved Fe (dFe; median of 12 nM) and Mn (dMn; median of 2.6 nM). The sediment load for Antarctic ice (median of 9 mg L−1, n=144) was low compared to prior reported values for the Arctic (up to 200 g L−1). Total dissolvable Fe and Mn retained a strong relationship with the sediment load (both R2=0.43, p<0.001), whereas weaker relationships were observed for dFe (R2=0.30, p<0.001), dMn (R2=0.20, p<0.001), and dSi (R2=0.29, p<0.001). A strong correlation between total dissolvable Fe and Mn (R2=0.95, p<0.001) and a total dissolvable Mn:Fe ratio of 0.024 suggested a lithogenic origin for the majority of sediment present in ice. Dissolved Mn was present at higher dMn:dFe ratios, with fluxes from melting ice roughly equivalent to 30 % of the corresponding dFe flux. Our results suggest that NOx- and PO43- concentrations measured in calved icebergs originate from the ice matrix. Conversely, high Fe and Mn, as well as occasionally high dSi concentrations, are associated with englacial sediment, which experiences limited biogeochemical processing prior to release into the ocean.
more »
« less
- Award ID(s):
- 2052549
- PAR ID:
- 10617365
- Publisher / Repository:
- The Cryosphere
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 18
- Issue:
- 12
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 5735 to 5752
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dissolved iron (dFe) is an essential micronutrient for phytoplankton, with vanishingly low oceanic dissolved concentrations (pico- to nanomoles per kg) known to limit growth—and thus influence primary productivity and carbon cycling—over much of the surface ocean. However, because of the considerable challenges associated with contamination-free sample collection and accurate analysis of such low dFe concentrations, the first reliable dFe measurements came only in the 1980s. Further, by 2003, despite several decades of research, there were only ~25 full-depth oceanic dFe profiles worldwide, with dust considered to be the main oceanic dFe source. Since 2008, facilitated by the extensive field campaign and rigorous intercalibration of the international GEOTRACES program, there has been an “explosion” in the availability of oceanic dFe data, with hundreds of profiles now available. Concurrently, there has been a paradigm shift to a view of the marine Fe cycle where multiple sources contribute, and some forms of dFe can be transported great distances through the intermediate and deep ocean. Here, we showcase the GEOTRACES dFe datasets across the different ocean basins, synthesize our current multi-source view of the oceanic Fe cycle, spotlight sediments as an important dFe source, and look to future directions for constraining oceanic dFe boundary exchange.more » « less
-
This dataset includes concentrations of dissolved (<0.4 micrometers (µm)) and labile particulate (0.4-5 µm and >5 µm) phosphorus (P), vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in shipboard incubation samples collected during the EXports Processes in the Oceans from RemoTe Sensing (EXPORTS) North Pacific (NP) cruise RR1813 on the R/V Roger Revelle near Ocean Station PAPA (Station P).more » « less
-
Abstract Large tabular icebergs account for the majority of ice mass calved from Antarctic ice shelves, but are omitted from climate models. Specifically, these models do not account for iceberg breakup and as a result, modeled large icebergs could drift to low latitudes. Here, we develop a physically based parameterization of iceberg breakup based on the “footloose mechanism” suitable for climate models. This mechanism describes breakup of ice pieces from the iceberg edges triggered by buoyancy forces associated with a submerged ice foot fringing the iceberg. This foot develops as a result of ocean‐induced melt and erosion of the iceberg freeboard explicitly parameterized in the model. We then use an elastic beam model to determine when the foot is large enough to trigger calving, as well as the size of each child iceberg, which is controlled with the ice stiffness parameter. We test the breakup parameterization with a realistic large iceberg calving‐size distribution in the Geophysical Fluid Dynamics Laboratory OM4 ocean/sea‐ice model and obtain simulated iceberg trajectories and areas that closely match observations. Thus, the footloose mechanism appears to play a major role in iceberg decay that was previously unaccounted for in iceberg models. We also find that varying the size of the broken ice bits can influence the iceberg meltwater distribution more than physically realistic variations to the footloose decay rate.more » « less
-
This dataset includes concentrations of dissolved (<0.2 micrometers (µm)) manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in depth profile samples collected on 8 September 2018 during the EXports Processes in the Oceans from RemoTe Sensing (EXPORTS) cruise aboard R/V Roger Revelle cruise RR1813 at Ocean Station PAPA (Station P).more » « less
An official website of the United States government

