Abstract Copy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on atRNAligase gene (Migut.N02091;RLG1a) exhibiting unprecedented, and fitness‐relevant,CNVwithin an annual population of the yellow monkeyflowerMimulus guttatus.RLG1a variation was associated with multiple traits in pooled population sequencing (PoolSeq) scans of phenotypic and phenological cohorts. Resequencing of inbred lines revealed intermediate‐frequency three‐copy variants ofRLG1a (trip+;5/35 = 14%), andtrip+lines exhibited elevatedRLG1a expression under multiple conditions.trip+carriers, in addition to being over‐represented in late‐flowering and large‐flowered PoolSeq populations, flowered later under stressful conditions in a greenhouse experiment (p < 0.05). In wild population samples, we discovered an additional rareRLG1a variant (high+) that carries 250–300 copies ofRLG1a totalling ~5.7 Mb (20–40% of a chromosome). In the progeny of ahigh+carrier, Mendelian segregation of diagnostic alleles andqPCR‐based copy counts indicate thathigh+is a single tandem array unlinked to the single‐copyRLG1a locus. In the wild,high+carriers had highest fitness in two particularly dry and/or hot years (2015 and 2017; bothp < 0.01), while single‐copy individuals were twice as fecund as eitherCNVtype in a lush year (2016:p < 0.005). Our results demonstrate fluctuating selection onCNVs affecting phenological traits in a wild population, suggest that planttRNAligases mediate stress‐responsive life‐history traits, and introduce a novel system for investigating the molecular mechanisms of gene amplification. 
                        more » 
                        « less   
                    
                            
                            Comparative Analyses of Four Reference Genomes Reveal Exceptional Diversity and Weak Linked Selection in the Yellow Monkeyflower ( Mimulus guttatus ) Complex
                        
                    
    
            ABSTRACT Yellow monkeyflowers (Mimulus guttatuscomplex, Phrymaceae) are a powerful system for studying ecological adaptation, reproductive variation, and genome evolution. To initiate pan‐genomics in this group, we present four chromosome‐scale assemblies and annotations of accessions spanning a broad evolutionary spectrum: two from a singleM. guttatuspopulation, one from the closely related selfing speciesM. nasutus, and one from a more divergent speciesM. tilingii. All assemblies are highly complete and resolve centromeric and repetitive regions. Comparative analyses reveal such extensive structural variation in repeat‐rich, gene‐poor regions that large portions of the genome are unalignable across accessions. As a result, thisMimuluspan‐genome is primarily informative in genic regions, underscoring limitations of resequencing approaches in such polymorphic taxa. We document gene presence–absence, investigate the recombination landscape using high‐resolution linkage data, and quantify nucleotide diversity. Surprisingly, pairwise differences at fourfold synonymous sites are exceptionally high—even in regions of very low recombination—reaching ~3.2% within a singleM. guttatuspopulation, ~7% within the interfertileM. guttatusspecies complex (approximately equal to SNP divergence between great apes and Old World monkeys), and ~7.4% between that complex and the reproductively isolatedM. tilingii. Genome‐wide patterns of nucleotide variation show little evidence of linked selection, and instead suggest that the concentration of genes (and likely selected sites) in high‐recombination regions may buffer diversity loss. These assemblies, annotations, and comparative analyses provide a robust genomic foundation forMimulusresearch and offer new insights into the interplay of recombination, structural variation, and molecular evolution in highly diverse plant genomes. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10617482
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology Resources
- Volume:
- 25
- Issue:
- 8
- ISSN:
- 1755-098X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Chromosomal inversion polymorphisms are ubiquitous across the diversity of diploid organisms and play a significant role in the evolution of adaptations in those species. Inversions are thought to operate as supergenes by trapping adaptive alleles at multiple linked loci through the suppression of recombination. While there is now considerable support for the supergene mechanism of inversion evolution, the extent to which inversions trap pre‐existing adaptive genetic variation versus accumulate new adaptive variants over time remains unclear. In this study, we report new insights into the evolution of a locally adaptive chromosomal inversion polymorphism (inv_chr8A), which contributes to the adaptive divergence between coastal perennial and inland annual ecotypes of the yellow monkeyflower,Mimulus guttatus. This research was enabled by the sequencing, assembly and annotation of new annual and perennial genomes ofM. guttatususing Oxford Nanopore long‐read sequencing technology. In addition to the adaptive inv_chr8A inversion, we identified three other large inversion polymorphisms, including a previously unknown large inversion (inv_chr8B) nested within inv_chr8A. Through population genomic analyses, we determined that the nested inv_chr8B inversion is significantly older than the larger chromosomal inversion in which it resides. We also evaluated the potential role of key candidate genes underlying the phenotypic effects of inv_chr8A. These genes are involved in gibberellin biosynthesis and anthocyanin regulation. Although little evidence was found to suggest that inversion breakpoint mutations drive adaptive phenotypic effects, our findings do support the supergene mechanism of adaptation and suggest it may sometimes involve nested inversions that evolve at different times.more » « less
- 
            Summary From a single transgenic line harboring fiveTnt1transposon insertions, we generated a near‐saturated insertion population inMedicago truncatula. Using thermal asymmetric interlaced‐polymerase chain reaction followed by sequencing, we recovered 388 888 flanking sequence tags (FSTs) from 21 741 insertion lines in this population.FSTrecovery from 14Tnt1lines using the whole‐genome sequencing (WGS) and/orTnt1‐capture sequencing approaches suggests an average of 80 insertions per line, which is more than the previous estimation of 25 insertions. Analysis of the distribution pattern and preference ofTnt1insertions showed thatTnt1is overall randomly distributed throughout theM. truncatulagenome. At the chromosomal level,Tnt1insertions occurred on both arms of all chromosomes, with insertion frequency negatively correlated with theGCcontent. Based on 174 546 filteredFSTs that show exact insertion locations in theM. truncatulagenome version 4.0 (Mt4.0), 0.44Tnt1insertions occurred per kb, and 19 583 genes containedTnt1with an average of 3.43 insertions per gene. Pathway and gene ontology analyses revealed thatTnt1‐inserted genes are significantly enriched in processes associated with ‘stress’, ‘transport’, ‘signaling’ and ‘stimulus response’. Surprisingly, gene groups with higher methylation frequency were more frequently targeted for insertion. Analysis of 19 583Tnt1‐inserted genes revealed that 59% (1265) of 2144 transcription factors, 63% (765) of 1216 receptor kinases and 56% (343) of 616 nucleotide‐binding site‐leucine‐rich repeat genes harbored at least oneTnt1insertion, compared with the overall 38% ofTnt1‐inserted genes out of 50 894 annotated genes in the genome.more » « less
- 
            Summary Distyly is an intriguing floral adaptation that increases pollen transfer precision and restricts inbreeding. It has been a model system in evolutionary biology since Darwin. Although theS‐locus determines the long‐ and short‐styled morphs, the genes were unknown inTurnera. We have now identified these genes.We used deletion mapping to identify, and then sequence,BACclones and genome scaffolds to constructS/shaplotypes. We investigated candidate gene expression, hemizygosity, and used mutants, to explore gene function.Thes‐haplotype possessed 21 genes collinear with a region of chromosome 7 of grape. TheS‐haplotype possessed three additional genes and two inversions.TsSPH1was expressed in filaments and anthers,TsYUC6in anthers andTsBAHDin pistils. Long‐homostyle mutants did not possessTsBAHDand a short‐homostyle mutant did not expressTsSPH1.Three hemizygous genes appear to determine S‐morph characteristics inT. subulata. Hemizygosity is common to all distylous species investigated, yet the genes differ. The pistil candidate gene,TsBAHD, differs from that ofPrimula, but both may inactivate brassinosteroids causing short styles.TsYUC6is involved in auxin synthesis and likely determines pollen characteristics.TsSPH1is likely involved in filament elongation. We propose an incompatibility mechanism involvingTsYUC6andTsBAHD.more » « less
- 
            Lobophorais a common tropical to temperate genus of brown algae found in a plethora of habitats including shallow and deep‐water coral reefs, rocky shores, mangroves, seagrass beds, and rhodoliths beds. Recent molecular studies have revealed thatLobophoraspecies diversity has been severely underestimated. Current estimates of the species numbers range from 100 to 140 species with a suggested center of diversity in the Central Indo‐Pacific. This study used three molecular markers (cox3,rbcL,psbA), different single‐marker species delimitation methods (GMYC,ABGD,PTP), and morphological evidence to evaluateLobophoraspecies diversity in the Western Atlantic and the Eastern Pacific oceans.Cox3 provided the greatest number of primary species hypotheses(PSH), followed byrbcL and thenpsbA.GMYCspecies delimitation analysis was the most conservative across all three markers, followed byPTP, and then ABGD. The most informative diagnostic morphological characters were thallus thickness and number of cell layers in both the medulla and the dorsal/ventral cortices. Following a consensus approach, 14 distinctLobophoraspecies were identified in the Western Atlantic and five in the Eastern Pacific. Eight new species from these two oceans were herein described:L. adpressasp. nov.,L. cocoensissp. nov.,L. colombianasp. nov.,L. crispatasp. nov.,L. delicatasp. nov.,L. dispersasp. nov.,L. panamensissp. nov., andL. tortugensissp. nov. This study showed that the best approach to confidently identifyLobophoraspecies is to analyzeDNAsequences (preferablycox3 andrbcL) followed by comparative morphological and geographical assessment.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
