skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding Moisture Variations in Madden–Julian Oscillation in NCAR CAM5.3
Abstract Previous observational and modeling studies have suggested that moisture plays a dominant role in Madden–Julian oscillation (MJO) evolution. Using a realistic MJO simulation by incorporating the role of mesoscale stratiform heating in the Zhang–McFarlane deep convection scheme in the National Center for Atmospheric Research Community Atmosphere Model, version 5.3 (NCAR CAM5.3), this study investigates the factors responsible for the improved MJO simulation by examining moisture variations during different MJO phases. The results of column moist static energy (MSE) and moisture budgets show that during the suppressed phases of MJO, vertical advection acts to increase MSE anomalies for the development of deep convection while radiative heating and surface heat flux decrease MSE. The opposite holds true at the MJO mature phase. However, their roles largely cancel each other, leaving horizontal advection to play a major role in the low-level MSE increase during the suppressed phase of the MJO and MSE decrease after the MJO mature phase. A further analysis combining moisture and temperature budget equations is performed to demonstrate the effects of vertical advection and cloud processes within the column at each level. The vertical profiles of column-confined moisture tendency show that large-scale vertical advection induced by latent heat release and evaporation within shallow convective clouds is also important to the lower-tropospheric moistening during suppressed phases. This confirms the role of shallow convection in low-level moistening ahead of MJO deep convection. Radiative heating is vital across all MJO phases, and its warming effects keep the column humidity anomaly maintained in mature phases. None of these features are reproduced by the standard CAM5.3.  more » « less
Award ID(s):
2054697
PAR ID:
10617500
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
38
Issue:
16
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 3953-3970
Size(s):
p. 3953-3970
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract A normalization method is applied to MJO-scale precipitation and column integrated moist static energy (MSE) anomalies to clearly illustrate the phase evolution of MJO. It is found that the MJO peak phases do not move smoothly, rather they jump from the original convective region to a new location to its east. Such a discontinuous phase evolution is related to the emerging and developing of new congestus convection to the east of the preexisting deep convection. While the characteristic length scale of the phase jump depends on a Kelvin wave response, the associated time scale represents the establishment of an unstable stratification in the front due to boundary layer moistening. The combined effect of the aforementioned characteristic length and time scales determines the observed slow eastward phase speed. Such a phase evolution characteristic seems to support the moisture mode theory of the second type that emphasizes the boundary layer moisture asymmetry, because the moisture mode theory of the first type, which emphasizes the moisture or MSE tendency asymmetry, might favor more “smooth” phase propagation. A longitudinal-location-dependent premoistening mechanism is found based on moisture budget analysis. For the MJO in the eastern Indian Ocean, the premoistening in front of the MJO convection arises from vertical advection, whereas for the MJO over the western Pacific Ocean, it is attributed to the surface evaporating process. 
    more » « less
  2. null (Ed.)
    Abstract Two existing moisture mode theories of the MJO, one emphasizing boundary layer moisture asymmetry (MA) and the other emphasizing column-integrated moist static energy (MSE) tendency asymmetry (TA), were validated with the diagnosis of observational data during 1979–2012. A total of 2343 MJO days are selected. While all these days show a clear phase leading of the boundary layer moisture, 20% of these days do not show a positive column-integrated MSE tendency in front of MJO convection (non-TA). A further MSE budget analysis indicates that the difference between the non-TA composite and the TA composite lies in the zonal extent of anomalously vertical overturning circulation in front of the MJO convection. A background mean precipitation modulation mechanism is proposed to explain the distinctive circulation responses. Dependent on the MJO location, an anomalous Gill response to the heating is greatly modulated by the seasonal mean and ENSO induced precipitation fields. Despite the negative MSE tendency in front of MJO convection in the non-TA group, the system continues moving eastward due to the effect of the boundary layer moistening, which promotes a convectively unstable stratification ahead of MJO convection. The analysis result suggests that the first type of moisture mode theories, the moisture asymmetry mechanism, appears more robust, particularly over the eastern Maritime Continent and western Pacific. 
    more » « less
  3. The modulation of the Madden–Julian Oscillation (MJO) intensity by eastern Pacific (EP) type and central Pacific (CP) type of El Niño was investigated using observed data during the period of 1979–2013. MJO intensity is weakened (strengthened) over the equatorial western Pacific from November to April during EP (CP) El Niño. The difference arises from distinctive tendencies of column-integrated moist static energy (MSE) anomaly in the region. A larger positive MSE tendency was found during the convection developing period in the CP MJO than the EP MJO. The tendency difference is mainly caused by three meridional moisture advection processes: the advection of the background moisture by the intraseasonal wind anomaly, the advection of intraseasonal moisture anomaly by the mean wind and the nonlinear eddy advection. The advections’ differences are primarily caused by different intraseasonal perturbations and high-frequency activity whereas the background flow and moisture gradient are similar. The amplitudes in the intraseasonal suppressed convection anomaly over the central Pacific is critical in modulating the three meridional moisture advection processes. The influences on the central Pacific convection anomaly from seasonal mean moisture in two types of El Niños are discussed. 
    more » « less
  4. Abstract Easterly waves (EWs) are off-equatorial tropical synoptic disturbances with a westward phase speed between 11 and 14 m s−1. Over the east Pacific in boreal summer, the combination of EWs and other synoptic disturbances, plus local mechanisms associated with sea surface temperature (SST) gradients, define the climatological structure of the intertropical convergence zone (ITCZ). The east Pacific ITCZ has both deep and shallow convection that is linked to deep and shallow meridional circulations, respectively. The deep convection is located around 9°N over warm SSTs. The shallow convection is located around 6°N and is driven by the meridional SST gradient south of the ITCZ. This study aims to document the interaction between east Pacific EWs and the deep and shallow meridional circulations during the Organization of Tropical East Pacific Convection (OTREC) field campaign in 2019 using field campaign observations, ERA5, and satellite precipitation. We identified three EWs during the OTREC period using precipitation and dynamical fields. Composite analysis shows that the convectively active part of the EW enhances ITCZ deep convection and is associated with an export of column-integrated moist static energy (MSE) by vertical advection. The subsequent convectively suppressed, anticyclonic part of the EW produces an increase of moisture and column-integrated MSE by horizontal advection that likely enhances shallow convection and the shallow overturning flow at 850 hPa over the southern part of the ITCZ. Therefore, EWs appear to strongly modulate shallow and deep circulations in the east Pacific ITCZ. 
    more » « less
  5. The two-way interaction between Madden–Julian oscillation (MJO) and higher-frequency waves (HFW) over the Maritime Continent (MC) during boreal winter of 1984–2005 is investigated. It is noted from observational analysis that strengthened (weakened) HFW activity appears to the west (east) of and under MJO convection during the MJO active phase and the opposite is seen during the MJO suppressed phase. Sensitivity model experiments indicate that the control of HFW activity by MJO is through change of the background vertical wind shear and specific humidity. The upscale feedbacks from HFW to MJO through nonlinear rectification of condensational heating and eddy momentum transport are also investigated with observational data. A significantly large amount (25%–40%) of positive heating anomaly ([Formula: see text]) at low levels to the east of MJO convection is contributed by nonlinear rectification of HFW. This nonlinear rectification is primarily attributed to eddy meridional moisture advection. A momentum budget diagnosis reveals that 60% of MJO zonal wind tendency at 850 hPa is attributed to the nonlinear interaction of HFW with other scale flows. Among them, the largest contribution arises from eddy zonal momentum flux divergence [Formula: see text]. Easterly (westerly) vertical shear to the west (east) of MJO convection during the MJO active phase causes the strengthening (weakening) of the HFW zonal wind anomaly. This leads to the increase (decrease) of eddy momentum flux activity to the east (west) of the MJO convection, which causes a positive (negative) eddy zonal momentum flux divergence in the zonal wind transitional region during the MJO active (suppressed) phase, favoring the eastward propagation of the MJO. 
    more » « less