Abstract We prove that the rational cohomology group$$H^{11}(\overline {\mathcal {M}}_{g,n})$$vanishes unless$$g = 1$$and$$n \geq 11$$. We show furthermore that$$H^k(\overline {\mathcal {M}}_{g,n})$$is pure Hodge–Tate for all even$$k \leq 12$$and deduce that$$\# \overline {\mathcal {M}}_{g,n}(\mathbb {F}_q)$$is surprisingly well approximated by a polynomial inq. In addition, we use$$H^{11}(\overline {\mathcal {M}}_{1,11})$$and its image under Gysin push-forward for tautological maps to produce many new examples of moduli spaces of stable curves with nonvanishing odd cohomology and nontautological algebraic cycle classes in Chow cohomology. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Gromov-Witten Invariants in Complex and Morava-Local K-Theories
                        
                    
    
            Abstract Given a closed symplectic manifoldX, we construct Gromov-Witten-type invariants valued both in (complex)K-theory and in any complex-oriented cohomology theory$$\mathbb{K}$$which isKp(n)-local for some MoravaK-theoryKp(n). We show that these invariants satisfy a version of the Kontsevich-Manin axioms, extending Givental and Lee’s work for the quantumK-theory of complex projective algebraic varieties. In particular, we prove a Gromov-Witten type splitting axiom, and hence define quantumK-theory and quantum$$\mathbb{K}$$-theory as commutative deformations of the corresponding (generalised) cohomology rings ofX; the definition of the quantum product involves the formal group of the underlying cohomology theory. The key geometric input of these results is a construction of global Kuranishi charts for moduli spaces of stable maps of arbitrary genus toX. On the algebraic side, in order to establish a common framework covering both ordinaryK-theory andKp(n)-local theories, we introduce a formalism of ‘counting theories’ for enumerative invariants on a category of global Kuranishi charts. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2327157
- PAR ID:
- 10617549
- Publisher / Repository:
- SpringerNature
- Date Published:
- Journal Name:
- Geometric and Functional Analysis
- Volume:
- 34
- Issue:
- 6
- ISSN:
- 1016-443X
- Page Range / eLocation ID:
- 1647 to 1733
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We study a family of invariants of compact metric spaces that combines the Curvature Sets defined by Gromov in the 1980 s with Vietoris–Rips Persistent Homology. For given integers$$k\ge 0$$ and$$n\ge 1$$ we consider the dimensionkVietoris–Rips persistence diagrams ofallsubsets of a given metric space with cardinality at mostn. We call these invariantspersistence setsand denote them as$${\textbf{D}}_{n,k}^{\textrm{VR}}$$ . We first point out that this family encompasses the usual Vietoris–Rips diagrams. We then establish that (1) for certain range of values of the parametersnandk, computing these invariants is significantly more efficient than computing the usual Vietoris–Rips persistence diagrams, (2) these invariants have very good discriminating power and, in many cases, capture information that is imperceptible through standard Vietoris–Rips persistence diagrams, and (3) they enjoy stability properties analogous to those of the usual Vietoris–Rips persistence diagrams. We precisely characterize some of them in the case of spheres and surfaces with constant curvature using a generalization of Ptolemy’s inequality. We also identify a rich family of metric graphs for which$${\textbf{D}}_{4,1}^{\textrm{VR}}$$ fully recovers their homotopy type by studying split-metric decompositions. Along the way we prove some useful properties of Vietoris–Rips persistence diagrams using Mayer–Vietoris sequences. These yield a geometric algorithm for computing the Vietoris–Rips persistence diagram of a spaceXwith cardinality$$2k+2$$ with quadratic time complexity as opposed to the much higher cost incurred by the usual algebraic algorithms relying on matrix reduction.more » « less
- 
            Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ -action. First, we find a two-parameter family$$X_{k,l}$$ of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ is obtained via direct limit$$l\longrightarrow \infty $$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual.more » « less
- 
            We study the query complexity of finding the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \)in two-player zero-sum matrix games. Fearnley and Savani [18] showed that for any randomized algorithm, there exists ann×ninput matrix where it needs to queryΩ(n2) entries in expectation to compute asingleNash equilibrium. On the other hand, Bienstock et al. [5] showed that there is a special class of matrices for which one can queryO(n) entries and compute its set of all Nash equilibria. However, these results do not fully characterize the query complexity of finding the set of all Nash equilibria in two-player zero-sum matrix games. In this work, we characterize the query complexity of finding the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \)in terms of the number of rowsnof the input matrix\(A \in \mathbb {R}^{n \times n} \), row support size\(k_1 := |\bigcup \limits _{x \in \mathcal {X}_\ast } \text{supp}(x)| \), and column support size\(k_2 := |\bigcup \limits _{y \in \mathcal {Y}_\ast } \text{supp}(y)| \). We design a simple yet non-trivial randomized algorithm that returns the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \)by querying at mostO(nk5· polylog(n)) entries of the input matrix\(A \in \mathbb {R}^{n \times n} \)in expectation, wherek≔ max{k1,k2}. This upper bound is tight up to a factor of poly(k), as we show that for any randomized algorithm, there exists ann×ninput matrix with min {k1,k2} = 1, for which it needs to queryΩ(nk) entries in expectation in order to find the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \).more » « less
- 
            We give a fully faithful integral model for simply connected finite complexes in terms of -ring spectra and the Nikolaus–Scholze Frobenius. The key technical input is the development of a homotopy coherent Frobenius action on a certain subcategory of -complete -rings for each prime . Using this, we show that the data of a simply connected finite complex is the data of its Spanier-Whitehead dual, as an -ring, together with a trivialization of the Frobenius action after completion at each prime. In producing the above Frobenius action, we explore two ideas which may be of independent interest. The first is a more general action of Frobenius in equivariant homotopy theory; we show that a version of Quillen’s -construction acts on the -category of -rings with “genuine equivariant multiplication,” which we call global algebras. The second is a “pre-group-completed” variant of algebraic -theory which we callpartial -theory. We develop the notion of partial -theory and give a computation of the partial -theory of up to -completion.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
