skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integral models for spaces via the higher Frobenius
We give a fully faithful integral model for simply connected finite complexes in terms of E ∞<#comment/> \mathbb {E}_{\infty } -ring spectra and the Nikolaus–Scholze Frobenius. The key technical input is the development of a homotopy coherent Frobenius action on a certain subcategory of p p -complete E ∞<#comment/> \mathbb {E}_{\infty } -rings for each prime p p . Using this, we show that the data of a simply connected finite complex X X is the data of its Spanier-Whitehead dual, as an E ∞<#comment/> \mathbb {E}_{\infty } -ring, together with a trivialization of the Frobenius action after completion at each prime. In producing the above Frobenius action, we explore two ideas which may be of independent interest. The first is a more general action of Frobenius in equivariant homotopy theory; we show that a version of Quillen’s Q Q -construction acts on the ∞<#comment/> \infty -category of E ∞<#comment/> \mathbb {E}_{\infty } -rings with “genuine equivariant multiplication,” which we call global algebras. The second is a “pre-group-completed” variant of algebraic K K -theory which we callpartial K K -theory. We develop the notion of partial K K -theory and give a computation of the partial K K -theory of F p \mathbb {F}_p up to p p -completion.  more » « less
Award ID(s):
2002029
PAR ID:
10552627
Author(s) / Creator(s):
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Journal of the American Mathematical Society
Volume:
36
Issue:
1
ISSN:
0894-0347
Page Range / eLocation ID:
107 to 175
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove a number of results on the survival of the type-I property under extensions of locally compact groups: (a) that given a closed normal embedding N ⊴<#comment/> E \mathbb {N}\trianglelefteq \mathbb {E} of locally compact groups and a twisted action ( α<#comment/> , τ<#comment/> ) (\alpha ,\tau ) thereof on a (post)liminal C ∗<#comment/> C^* -algebra A A the twisted crossed product A ⋊<#comment/> α<#comment/> , τ<#comment/> E A\rtimes _{\alpha ,\tau }\mathbb {E} is again (post)liminal and (b) a number of converses to the effect that under various conditions a normal, closed, cocompact subgroup N ⊴<#comment/> E \mathbb {N}\trianglelefteq \mathbb {E} is type-I as soon as E \mathbb {E} is. This happens for instance if N \mathbb {N} is discrete and E \mathbb {E} is Lie, or if N \mathbb {N} is finitely-generated discrete (with no further restrictions except cocompactness). Examples show that there is not much scope for dropping these conditions. In the same spirit, call a locally compact group G \mathbb {G} type-I-preserving if all semidirect products N ⋊<#comment/> G \mathbb {N}\rtimes \mathbb {G} are type-I as soon as N \mathbb {N} is, andlinearlytype-I-preserving if the same conclusion holds for semidirect products V ⋊<#comment/> G V\rtimes \mathbb {G} arising from finite-dimensional G \mathbb {G} -representations. We characterize the (linearly) type-I-preserving groups that are (1) discrete-by-compact-Lie, (2) nilpotent, or (3) solvable Lie. 
    more » « less
  2. Motivated by questions asked by Erdős, we prove that any set A ⊂<#comment/> N A\subset \mathbb {N} with positive upper density contains, for any k ∈<#comment/> N k\in \mathbb {N} , a sumset B 1 + ⋯<#comment/> + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂<#comment/> N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of k = 2 k=2
    more » « less
  3. We develop a higher semiadditive version of Grothendieck-Witt theory. We then apply the theory in the case of a finite field to study the higher semiadditive structure of the K ( 1 ) K(1) -local sphere S K ( 1 ) \mathbb {S}_{K(1)} at the prime 2 2 , in particular realizing the non- 2 2 -adic rational element 1 + ε<#comment/> ∈<#comment/> π<#comment/> 0 S K ( 1 ) 1+\varepsilon \in \pi _0\mathbb {S}_{K(1)} as a “semiadditive cardinality.” As a further application, we compute and clarify certain power operations in π<#comment/> 0 S K ( 1 ) \pi _0\mathbb {S}_{K(1)}
    more » « less
  4. We introduce the notions of symmetric and symmetrizable representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} . The linear representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} arising from modular tensor categories are symmetric and have congruence kernel. Conversely, one may also reconstruct modular data from finite-dimensional symmetric, congruence representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} . By investigating a Z / 2 Z \mathbb {Z}/2\mathbb {Z} -symmetry of some Weil representations at prime power levels, we prove that all finite-dimensional congruence representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} are symmetrizable. We also provide examples of unsymmetrizable noncongruence representations of SL 2 ⁡<#comment/> ( Z ) {\operatorname {SL}_2(\mathbb {Z})} that are subrepresentations of a symmetric one. 
    more » « less
  5. We describe in terms of generators and relations the ring structure of the R O ( C 2 ) RO(C_2) -graded C 2 C_2 -equivariant stable stems π<#comment/> ⋆<#comment/> C 2 \pi _\star ^{C_2} modulo the ideal of all nilpotent elements. As a consequence, we also record the ring structure of the homotopy groups of the rational C 2 C_2 -equivariant sphere π<#comment/> ⋆<#comment/> C 2 ( S Q ) \pi _\star ^{C_2}(\mathbb {S}_\mathbb {Q})
    more » « less