Abstract Disassembly is an essential process for the recovery of end-of-life (EOL) electronics in remanufacturing sites. Nevertheless, the process remains labor-intensive due to EOL electronics’ high degree of uncertainty and complexity. The robotic technology can assist in improving disassembly efficiency; however, the characteristics of EOL electronics pose difficulties for robot operation, such as removing small components. For such tasks, detecting small objects is critical for robotic disassembly systems. Screws are widely used as fasteners in ordinary electronic products while having small sizes and varying shapes in a scene. To enable robotic systems to disassemble screws, the location information and the required tools need to be predicted. This paper proposes a computer vision framework for detecting screws and recommending related tools for disassembly. First, a YOLOv4 algorithm is used to detect screw targets in EOL electronic devices and a screw image extraction mechanism is executed based on the position coordinates predicted by YOLOv4. Second, after obtaining the screw images, the EfficientNetv2 algorithm is applied for screw shape classification. In addition to proposing a framework for automatic small-object detection, we explore how to modify the object detection algorithm to improve its performance and discuss the sensitivity of tool recommendations to the detection predictions. A case study of three different types of screws in EOL electronics is used to evaluate the performance of the proposed framework. 
                        more » 
                        « less   
                    This content will become publicly available on September 1, 2026
                            
                            AI-driven value assessment for intelligent remanufacturing; Advances in remanufacturing 2024: Proceedings of VIII International Workshop on Autonomous Remanufacturing (Lecture Notes in Mechanical Engineering)
                        
                    
    
            This paper aims to introduce an Artificial Intelligence (AI) guided computational framework for the automatic identification, inspection, assessment, and remanufacturing of end-of-use products. The proposed framework consists of three main steps: (1) developing computer vision and image processing algorithms for analyzing product teardown images, (2) quantifying the economic and environmental value of remanufacturing from product images, and (3) developing recommender algorithms to identify the best recovery decision for each device. The paper discusses the importance of advancing object detection, image segmentation, and machine learning algorithms to automatically compute the value embedded in discarded items and developing recommendation systems to determine remanufacturing operations from product configurations. The main focus of the paper is on the value assessment and remanufacturing of electronic waste (e-waste). The paper emphasizes the need for developing object detection for identifying small objects (e.g., screws, bolts, snaps) and overlapped components (e.g., cables, printed circuit boards) standard in the design of consumer electronics by incorporating product shapes and features. The proposed value assessment framework has applications beyond remanufacturing and can be used in take-back programs and other business models that benefit from product serialization and assessment of individual devices. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10617555
- Editor(s):
- Rickli, Jeremy
- Publisher / Repository:
- Springer
- Date Published:
- ISSN:
- 2195-4364
- ISBN:
- 978-3-031-92425-5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Disassembly is an essential process for the recovery of end-of-life (EOL) electronics in remanufacturing sites. Nevertheless, the process remains labor-intensive due to EOL electronics' high degree of uncertainty and complexity. The robotic technology can assist in improving disassembly efficiency, however, the characteristics of EOL electronics pose difficulties for robot operation, such as removing small components. For such tasks, detecting small objects is critical for robotic disassembly systems. Screws are widely used as fasteners in ordinary electronic products while having small sizes and varying shapes in a scene. To achieve robotic disassembly of screws, the location information and the required tools need to be predicted. This paper proposes a framework to automatically detect screws and recommend related tools for disassembly. First, the YOLOv4 algorithm is used to detect screw targets in EOL electronic devices, and then a screw image extraction mechanism is executed based on the position coordinates predicted by YOLOv4. Second, after obtaining the screw images, the EfficientNetv2 algorithm is applied for screw shape classification. In addition to proposing a framework for automatic small-object detection, we explore how to modify the object detection algorithm to improve its performance and discuss the sensitivity of tool recommendations to the detection predictions. A case study of three different types of screws is used to evaluate the performance of the proposed framework.more » « less
- 
            As electronic waste (e-waste) becomes one of the fastest growing environmental concerns, remanufacturing is considered as a promising solution. However, the profitability of take back systems is hampered by several factors including the lack of information on the quantity and timing of to-be-returned used products to a remanufacturing facility. Product design features, consumers’ awareness of recycling opportunities, socio-demographic information, peer pressure, and the tendency of customer to keep used items in storage are among contributing factors in increasing uncertainties in the waste stream. Predicting customer choice decisions on returning back used products, including both the time in which the customer will stop using the product and the end-of-use decisions (e.g. storage, resell, through away, and return to the waste stream) could help manufacturers have a better estimation of the return trend. The objective of this paper is to develop an Agent Based Simulation (ABS) model integrated with Discrete Choice Analysis (DCA) technique to predict consumer decisions on the End-of-Use (EOU) products. The proposed simulation tool aims at investigating the impact of design features, interaction among individual consumers and socio-demographic characteristics of end users on the number of returns. A numerical example of cellphone take-back system has been provided to show the application of the model.more » « less
- 
            Automatic video analysis tools are an indispensable component in imaging applications. Object detection, the first and the most important step for automatic video analysis, is implemented in many embedded cameras. The accuracy of object detection relies on the quality of images that are processed. This paper proposes a new image quality model for predicting the performance of object detection on embedded cameras. A video data set is constructed that considers different factors for quality degradation in the imaging process, such as reduced resolution, noise, and blur. The performances of commonly used low-complexity object detection algorithms are obtained for the data set. A no-reference regression model based on a bagging ensemble of regression trees is built to predict the accuracy of object detection using observable features in an image. Experimental results show that the proposed model provides more accurate predictions of image quality for object detection than commonly known image quality measures.more » « less
- 
            Abstract Despite the importance of product repairability, current methods for assessing and grading repairability are limited, which hampers the efforts of designers, remanufacturers, original equipment manufacturers (OEMs), and repair shops. To improve the efficiency of assessing product repairability, this study introduces two artificial intelligence (AI) based approaches. The first approach is a supervised learning framework that utilizes object detection on product teardown images to measure repairability. Transfer learning is employed with machine learning architectures such as ConvNeXt, GoogLeNet, ResNet50, and VGG16 to evaluate repairability scores. The second approach is an unsupervised learning framework that combines feature extraction and cluster learning to identify product design features and group devices with similar designs. It utilizes an oriented FAST and rotated BRIEF feature extractor (ORB) along with k-means clustering to extract features from teardown images and categorize products with similar designs. To demonstrate the application of these assessment approaches, smartphones are used as a case study. The results highlight the potential of artificial intelligence in developing an automated system for assessing and rating product repairability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
