skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: First order corrections to the homogenized scattering resonances for periodic scatterers
We consider the asymptotic analysis of the resonances of the scalar Helmholtz equation corresponding to a bounded scatterer with a periodic index of refraction and small period size ϵ. When the homogenized resonance is simple, we derive an explicit formula for the first order corrections to the limiting resonances. For scatterers with boundary that has a flat part of rational normal, the first order corrections are not unique and depend on the interaction of the boundary of the scatterer with the microstructure. In this case the resonances converge only O(ϵ) in general. For smooth domains with no flat parts, the resonances converge o(ϵ), but the convergence is nonetheless sub-quadratic.  more » « less
Award ID(s):
2308200 2008441
PAR ID:
10617609
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Mathematical Physics
Date Published:
Journal Name:
Journal of Mathematical Physics
Volume:
66
Issue:
4
ISSN:
0022-2488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We study anO(N) invariant surface defect in the Wilson-Fisher conformal field theory (CFT) ind= 4 –ϵdimensions. This defect is defined by mass deformation on a two-dimensional surface that generates localized disorder and is conjectured to factorize into a pair of ordinary boundary conditions ind= 3. We determine defect CFT data associated with the lightestO(N) singlet and vector operators up to the third order in theϵ-expansion, find agreements with results from numerical methods and provide support for the factorization proposal ind= 3. Along the way, we observe surprising non-renormalization properties for surface anomalous dimensions and operator-product-expansion coefficients in theϵ-expansion. We also analyze the full conformal anomalies for the surface defect. 
    more » « less
  2. We remark on the use of regularized Stokeslets in the slender body theory (SBT) approximation of Stokes flow about a thin fiber of radius ϵ>0. Denoting the regularization parameter by δ, we consider regularized SBT based on the most common regularized Stokeslet plus a regularized doublet correction. Given sufficiently smooth force data along the filament, we derive L∞ bounds for the difference between regularized SBT and its classical counterpart in terms of δ, ϵ, and the force data. We show that the regularized and classical expressions for the velocity of the filament itself differ by a term proportional to log(δ/ϵ); in particular, δ=ϵ is necessary to avoid an O(1) discrepancy between the theories. However, the flow at the surface of the fiber differs by an expression proportional to log(1+δ2/ϵ2), and any choice of δ∝ϵ will result in an O(1) discrepancy as ϵ→0. Consequently, the flow around a slender fiber due to regularized SBT does not converge to the solution of the well-posed slender body PDE which classical SBT is known to approximate. Numerics verify this O(1) discrepancy but also indicate that the difference may have little impact in practice. 
    more » « less
  3. Abstract In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping intoH1of a small ball. 
    more » « less
  4. We study Markov potential games under the infinite horizon average reward criterion. Most previous studies have been for discounted rewards. We prove that both algorithms based on independent policy gradient and independent natural policy gradient converge globally to a Nash equilibrium for the average reward criterion. To set the stage for gradient-based methods, we first establish that the average reward is a smooth function of policies and provide sensitivity bounds for the differential value functions, under certain conditions on ergodicity and the second largest eigenvalue of the underlying Markov decision process (MDP). We prove that three algorithms, policy gradient, proximal-Q, and natural policy gradient (NPG), converge to an ϵ-Nash equilibrium with time complexity O(1ϵ2), given a gradient/differential Q function oracle. When policy gradients have to be estimated, we propose an algorithm with ~O(1mins,aπ(a|s)δ) sample complexity to achieve δ approximation error w.r.t~the ℓ2 norm. Equipped with the estimator, we derive the first sample complexity analysis for a policy gradient ascent algorithm, featuring a sample complexity of ~O(1/ϵ5). Simulation studies are presented. 
    more » « less
  5. null (Ed.)
    We initiate the study of quantum algorithms for escaping from saddle points with provable guarantee. Given a function f : R n → R , our quantum algorithm outputs an ϵ -approximate second-order stationary point using O ~ ( log 2 ⁡ ( n ) / ϵ 1.75 ) queries to the quantum evaluation oracle (i.e., the zeroth-order oracle). Compared to the classical state-of-the-art algorithm by Jin et al. with O ~ ( log 6 ⁡ ( n ) / ϵ 1.75 ) queries to the gradient oracle (i.e., the first-order oracle), our quantum algorithm is polynomially better in terms of log ⁡ n and matches its complexity in terms of 1 / ϵ . Technically, our main contribution is the idea of replacing the classical perturbations in gradient descent methods by simulating quantum wave equations, which constitutes the improvement in the quantum query complexity with log ⁡ n factors for escaping from saddle points. We also show how to use a quantum gradient computation algorithm due to Jordan to replace the classical gradient queries by quantum evaluation queries with the same complexity. Finally, we also perform numerical experiments that support our theoretical findings. 
    more » « less