skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neutron Elastic Scattering Differential Cross Sections on 13 C
Neutron elastic scattering cross sections on natural carbon serve as a reference standard in the incident energy range 10 eV to 1.8 MeV. The 2017 standards evaluation [1, 2] is 0.5 to 2.0% higher in that energy range than the 2006 standards evaluation [3]. In addition the ENDF/B-VIII.0 release split the natural carbon cross sections into the isotopes12C,13C, and14C for the first time. These details call for the re-measurement of the13C cross sections in sensitive regions. Ten elastic scattering angular distributions were recently measured for incident neutron energies between 0.5 and 3.25 MeV at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator/) using nanosecond pulsed beams and time-of-flight techniques. An overview of neutron production and detection, the new digital data acquisition system, and data analysis will be presented. Results are compared with data from previous measurements and database evaluations.  more » « less
Award ID(s):
2209178 1913028
PAR ID:
10617737
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Jentschel, M
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
329
ISSN:
2100-014X
Page Range / eLocation ID:
05004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jentschel, M (Ed.)
    γ-ray production cross sections have been deduced for reactions with incident neutrons having energies from 1.5 - 4.7 MeV. Similar measurements were made on a natural Ti sample to establish an absolute normalization. The resulting γ-ray production cross sections are compared to TENDL and TALYS calculations, as well as data from previous measurements. The models are found to describe the production cross sections for mostγrays observed from54Mn and54Fe rather well. 
    more » « less
  2. Abstract We use two different methods, Monte Carlo sampling and variational inference (VI), to perform a Bayesian calibration of the effective-range parameters in3He–4He elastic scattering. The parameters are calibrated to data from a recent set of3He–4He elastic scattering differential cross section measurements. Analysis of these data forElab≤ 4.3 MeV yields a unimodal posterior for which both methods obtain the same structure. However, the effective-range expansion amplitude does not account for the 7/2state of7Be so, even after calibration, the description of data at the upper end of this energy range is poor. The data up toElab = 2.6 MeV can be well described, but calibration to this lower-energy subset of the data yields a bimodal posterior. After adapting VI to treat such a multi-modal posterior we find good agreement between the VI results and those obtained with parallel-tempered Monte Carlo sampling. 
    more » « less
  3. Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S. (Ed.)
    Neutron capture reactions are the main contributors to the synthesis of the heavy elements through the s-process. Together with 13 C( α , n) 16 O, which has recently been measured by the LUNA collaboration in an energy region inside the Gamow peak, 22 Ne( α , n) 25 Mg is the other main neutron source in stars. Its cross section is mostly unknown in the relevant stellar energy (450 keV < E cm < 750 keV), where only upper limits from direct experiments and highly uncertain estimates from indirect sources exist. The ERC project SHADES (UniNa/INFN) aims to provide for the first time direct cross section data in this region and to reduce the uncertainties of higher energy resonance parameters. High sensitivity measurements will be performed with the new LUNA-MV accelerator at the INFN-LNGS laboratory in Italy: the energy sensitivity of the SHADES hybrid neutron detector, together with the low background environment of the LNGS and the high beam current of the new accelerator promises to improve the sensitivity by over 2 orders of magnitude over the state of the art, allowing to finally probe the unexplored low-energy cross section. Here we present an overview of the project and first results on the setup characterization. 
    more » « less
  4. Mattoon, C.M.; Vogt, R.; Escher, J.; Thompson, I. (Ed.)
    The cross-section of the thermal neutron capture41Ar(n,γ)42Ar(t1/2=32.9 y) reaction was measured by irradiating a40Ar sample at the high-flux reactor of Institut Laue-Langevin (ILL) Grenoble, France. The signature of the two-neutron capture has been observed by measuring the growth curve and identifying the 1524.6 keV γ-lines of the shorter-lived42K(12.4 h) βdaughter of42Ar. Our preliminary value of the41Ar(n,γ)42Ar thermal cross section is 240(80) mb at 25.3 meV. For the first time, direct counting of42Ar was performed using the ultra-high sensitivity technique of noble gas accelerator mass spectrometry (NOGAMS) at Argonne National Laboratory, USA. 
    more » « less
  5. Abstract We investigate the fundamental three-body Coulomb process of elastic electron-positronium (e--Ps) scattering below the Ps(n = 2) threshold. Using the complex Kohn variational method and trial wave functions that contain highly correlated Hylleraas-type terms, we accurately compute1,3S-,1,3P-, and1,3D-wave phase shifts, which may be considered as benchmark results. We explicitly investigate the effect of the mixed symmetry term in the short-range part of the1,3D-wave trial wave function on the phase shifts and resonances. Using the complex Kohn phase shifts we compute, for e-Ps scattering, the elastic differential, elastic integrated, momentum-transfer, and ortho-para conversion cross sections and determine the importance of the complex Kohn D-wave phase shifts on these cross sections. In addition, using the short-range part of the1S-wave trial wave function for the bound state of the purely leptonic ion of Ps, and the complex Kohn1P trial wave function for the continuum state, we determine the Psphotodetachment cross section in the length, velocity, and acceleration forms. 
    more » « less