skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 5, 2026

Title: Defending against diverse attacks in federated learning through consensus-based bi-level optimization
Adversarial attacks pose significant challenges in many machine learning applications, particularly in the setting of distributed training and federated learning, where malicious agents seek to corrupt the training process with the goal of jeopardizing and compromising the performance and reliability of the final models. In this paper, we address the problem of robust federated learning in the presence of such attacks by formulating the training task as a bi-level optimization problem. We conduct a theoretical analysis of the resilience of consensus-based bi-level optimization (CB2O), an interacting multi-particle metaheuristic optimization method, in adversarial settings. Specifically, we provide a global convergence analysis of CB2O in mean-field law in the presence of malicious agents, demonstrating the robustness of CB2O against a diverse range of attacks. Thereby, we offer insights into how specific hyperparameter choices enable to mitigate adversarial effects. On the practical side, we extend CB2O to the clustered federated learning setting by proposing FedCB2O, a novel interacting multi-particle system, and design a practical algorithm that addresses the demands of real-world applications. Extensive experiments demonstrate the robustness of the FedCB2O algorithm against label-flipping attacks in decentralized clustered federated learning scenarios, showcasing its effectiveness in practical contexts. This article is part of the theme issue ‘Partial differential equations in data science’.  more » « less
Award ID(s):
2236447 2023239
PAR ID:
10617750
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Royal Society Publishing
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
383
Issue:
2298
ISSN:
1364-503X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent years have seen the increasing attention and popularity of federated learning (FL), a distributed learning framework for privacy and data security. However, by its fundamental design, federated learning is inherently vulnerable to model poisoning attacks: a malicious client may submit the local updates to influence the weights of the global model. Therefore, detecting malicious clients against model poisoning attacks in federated learning is useful in safety-critical tasks.However, existing methods either fail to analyze potential malicious data or are computationally restrictive. To overcome these weaknesses, we propose a robust federated learning method where the central server learns a supervised anomaly detector using adversarial data generated from a variety of state-of-the-art poisoning attacks. The key idea of this powerful anomaly detector lies in a comprehensive understanding of the benign update through distinguishing it from the diverse malicious ones. The anomaly detector would then be leveraged in the process of federated learning to automate the removal of malicious updates (even from unforeseen attacks).Through extensive experiments, we demonstrate its effectiveness against backdoor attacks, where the attackers inject adversarial triggers such that the global model will make incorrect predictions on the poisoned samples. We have verified that our method can achieve 99.0% detection AUC scores while enjoying longevity as the model converges. Our method has also shown significant advantages over existing robust federated learning methods in all settings. Furthermore, our method can be easily generalized to incorporate newly-developed poisoning attacks, thus accommodating ever-changing adversarial learning environments. 
    more » « less
  2. Federated learning—multi-party, distributed learning in a decentralized environment—is vulnerable to model poisoning attacks, more so than centralized learning. This is because malicious clients can collude and send in carefully tailored model updates to make the global model inaccurate. This motivated the development of Byzantine-resilient federated learning algorithms, such as Krum, Bulyan, FABA, and FoolsGold. However, a recently developed untargeted model poisoning attack showed that all prior defenses can be bypassed. The attack uses the intuition that simply by changing the sign of the gradient updates that the optimizer is computing, for a set of malicious clients, a model can be diverted from the optima to increase the test error rate. In this work, we develop FLAIR—a defense against this directed deviation attack (DDA), a state-of-the-art model poisoning attack. FLAIR is based on ourintuition that in federated learning, certain patterns of gradient flips are indicative of an attack. This intuition is remarkably stable across different learning algorithms, models, and datasets. FLAIR assigns reputation scores to the participating clients based on their behavior during the training phase and then takes a weighted contribution of the clients. We show that where the existing defense baselines of FABA [IJCAI’19], FoolsGold [Usenix ’20], and FLTrust [NDSS ’21] fail when 20-30% of the clients are malicious, FLAIR provides byzantine-robustness upto a malicious client percentage of 45%. We also show that FLAIR provides robustness against even a white-box version of DDA. 
    more » « less
  3. Recent studies have shown that deep reinforcement learning agents are vulnerable to small adversarial perturbations on the agent’s inputs, which raises concerns about deploying such agents in the real world. To address this issue, we propose RADIAL-RL, a principled framework to train reinforcement learning agents with improved robustness against lp-norm bounded adversarial attacks. Our framework is compatible with popular deep reinforcement learning algorithms and we demonstrate its performance with deep Q-learning, A3C and PPO. We experiment on three deep RL benchmarks (Atari, MuJoCo and ProcGen) to show the effectiveness of our robust training algorithm. Our RADIAL-RL agents consistently outperform prior methods when tested against attacks of varying strength and are more computationally efficient to train. In addition, we propose a new evaluation method called Greedy Worst-Case Reward (GWC) to measure attack agnostic robustness of deep RL agents. We show that GWC can be evaluated efficiently and is a good estimate of the reward under the worst possible sequence of adversarial attacks. All code used for our experiments is available at https://github.com/tuomaso/radial_rl_v2. 
    more » « less
  4. In recent years, federated minimax optimization has attracted growing interest due to its extensive applications in various machine learning tasks. While Smoothed Alternative Gradient Descent Ascent (Smoothed-AGDA) has proved successful in centralized nonconvex minimax optimization, how and whether smoothing techniques could be helpful in a federated setting remains unexplored. In this paper, we propose a new algorithm termed Federated Stochastic Smoothed Gradient Descent Ascent (FESS-GDA), which utilizes the smoothing technique for federated minimax optimization. We prove that FESS-GDA can be uniformly applied to solve several classes of federated minimax problems and prove new or better analytical convergence results for these settings. We showcase the practical efficiency of FESS-GDA in practical federated learning tasks of training generative adversarial networks (GANs) and fair classification. 
    more » « less
  5. Federated learning (FL) emerges as a popular distributed learning schema that learns a model from a set of participating users without sharing raw data. One major challenge of FL comes with heterogeneous users, who may have distributionally different (or non-iid) data and varying computation resources. As federated users would use the model for prediction, they often demand the trained model to be robust against malicious attackers at test time. Whereas adversarial training (AT) provides a sound solution for centralized learning, extending its usage for federated users has imposed significant challenges, as many users may have very limited training data and tight computational budgets, to afford the data-hungry and costly AT. In this paper, we study a novel FL strategy: propagating adversarial robustness from rich-resource users that can afford AT, to those with poor resources that cannot afford it, during federated learning. We show that existing FL techniques cannot be effectively integrated with the strategy to propagate robustness among non-iid users and propose an efficient propagation approach by the proper use of batch-normalization. We demonstrate the rationality and effectiveness of our method through extensive experiments. Especially, the proposed method is shown to grant federated models remarkable robustness even when only a small portion of users afford AT during learning. Source code can be accessed at https://github.com/illidanlab/FedRBN. 
    more » « less