skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Why is the film model fundamentally wrong but still able to correlate the experimental data in membrane processes?
The film model that predicts a logarithmic dependence of permeate velocity on feed solute concentration in membrane separation processes is fundamentally wrong because the primary mass balance equation in the model is inapplicable to the total solute. Based on mass balance relationships on the retained solute, The permeate velocity in crossflow membrane separation processes can be rigorously shown to be a cube root function of the retained solute concentration. Furthermore, the reported good fitness of the film model to the experimental permeate velocities can be shown just to be a delusion of curve fitting mainly due to the adjustable parameters in the model.  more » « less
Award ID(s):
2219936
PAR ID:
10617880
Author(s) / Creator(s):
Publisher / Repository:
Elsevier B.V.
Date Published:
Journal Name:
Journal of membrane science
ISSN:
1873-3123
Subject(s) / Keyword(s):
Concentration polarization Film model Retained solute Permeate velocity Membrane separation processes
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The use of membrane technologies for separation processes is an alternative approach to reduce the environmental impact and energy demand of separations. The development of new membrane materials plays a central role to overcome the limitations of membranes in terms of selectivity, permeability, and stability. Most membrane materials in the past have been engineered to control the relative magnitude of the flux of the species diffusing through the membrane. However, mass flux is a vector and controlling its direction can open new opportunities to design separation processes. In this paper we characterize the separation capabilities of metamaterial-inspired anisotropic planar membranes by studying the development of spatially dependent permeabilities and selectivities as a consequence of manipulating the flux direction within the membrane. Specifically, we show how the performance of anisotropic planar membranes for separations can be characterized in terms of permeability, selectivity, and the collected permeate proportion. In contrast to isotropic membrane materials, we show how the selectivity under single stage operation can be increased beyond the selectivities of the constituent materials by reducing the permeate proportion that is collected. Our work provides new opportunities for the design of alternative separation processes that take advantage of flux directional control within membrane materials. 
    more » « less
  2. Recent advances in the use of viral vectors for gene therapy has created a need for efficient downstream processing of these novel therapeutics. Single-pass tangential flow filtration (SPTFF) can potentially improve final product quality via reductions in shear, and it can increase manufacturing productivity via simple implementation into continuous/intensified processes. This study investigated the impact of variations in pressure and flow rate along the length of the membrane on overall SPTFF performance. Constant-flux filtration experiments at feed fluxes from 14 to 420 L/m2/h (Reynolds numbers <20) were performed using Pellicon® 3 TFF cassettes with fluorescent nanoparticles as model viral vectors. The location of nanoparticle accumulation shifted towards the filter outlet at high conversion and was also a function of the permeate flow configuration. These phenomena were explained using a newly developed concentration polarization model that predicts the distribution in local wall concentration over the length of the membrane. The model accurately captured the observed nanoparticle accumulation trends, including the effects of the permeate flow profile (co-current, divergent, or convergent flow) on nanoparticle accumulation within the SPTFF module. Nanoparticle accumulation at moderate conversion was more uniform using convergent flow, but nanoparticle accumulation at 80 % conversion (5x concentration factor) can be minimized using a divergent flow configuration. The local wall concentration model was also used to evaluate the critical flux by assuming that fouling occurs when the nanoparticle concentration at any point along the membrane surface exceeds 15 % by volume. These results provide important insights for the design and operation of SPTFF technology for inline concentration of viral vectors. 
    more » « less
  3. Abstract There is a need for developing reliable models for water and solute transport in graphene oxide (GO) membranes for advancing their emerging industrial water processing applications. In this direction, we develop predictive transport models for GO and reduced‐GO (rGO) membranes over a wide solute concentration range (0.01–0.5 M) and compositions, based on the extended Nernst–Planck transport equations, Donnan equilibrium condition, and solute adsorption models. Some model parameters are obtained by fitting experimental permeation data for water and unary (single‐component) aqueous solutions. The model is validated by predicting experimental permeation behavior in binary solutions, which display very different characteristics. Sensitivity analysis of salt rejections as a function of membrane design parameters (pore size and membrane charge density) allows us to infer design targets to achieve high salt rejections. Such models will be useful in accelerating structure‐separation property relationships of GO membranes and for separation process design and optimization. 
    more » « less
  4. In membrane-based separation, molecular size differences relative to membrane pore sizes govern mass flux and separation efficiency. In applications requiring complex molecular differentiation, such as in natural gas processing, cascaded pore size distributions in membranes allow different permeate molecules to be separated without a reduction in throughput. Here, we report the decoration of microporous polymer membrane surfaces with molecular fluorine. Molecular fluorine penetrates through the microporous interface and reacts with rigid polymeric backbones, resulting in membrane micropores with multimodal pore size distributions. The fluorine acts as angstrom-scale apertures that can be controlled for molecular transport. We achieved a highly effective gas separation performance in several industrially relevant hollow-fibrous modular platform with stable responses over 1 year. 
    more » « less
  5. Abstract Membrane‐based technologies are attractive for remediating oily wastewater because they are relatively energy‐efficient and are applicable to a wide range of industrial effluents. For complete treatment of oily wastewater, removing dissolved contaminants from the water phase is typically followed by adsorption onto an adsorbent, which complicates the process. Here, an in‐air superhydrophilic and underwater superoleophobic membrane‐based continuous separation of surfactant‐stabilized oil‐in‐water emulsions and in situ decontamination of water by visible‐light‐driven photocatalytic degradation of dissolved organic contaminants is reported. The membrane is fabricated by utilizing a thermally sensitized stainless steel mesh coated with visible light absorbing iron‐doped titania nanoparticles. Post annealing of the membrane can enhance the adhesion of nanoparticles to the membrane surface by formation of a bridge between them. An apparatus that enables continuous separation of surfactant‐stabilized oil‐in‐water emulsion and in situ photocatalytic degradation of dissolved organic matter in the water‐rich permeate upon irradiation of visible light on the membrane surface with greater than 99% photocatalytic degradation is developed. The membrane demonstrates the recovery of its intrinsic water‐rich permeate flux upon continuous irradiation of light after being contaminated with oil. Finally, continuous oil−water separation and in situ water decontamination is demonstrated by photocatalytically degrading model toxins in water‐rich permeate. 
    more » « less