- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
00000040000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Tartakovsky, Daniel M (3)
-
Bakarji, Joseph (1)
-
Boso, F. (1)
-
Chandra, Abhishek (1)
-
Kang, Wei (1)
-
Lu, Hannah (1)
-
Srivastava, Apoorv (1)
-
Tartakovsky, D.M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2025
-
Chandra, Abhishek ; Bakarji, Joseph ; Tartakovsky, Daniel M ( , Journal of Machine Learning for Modeling and Computing)Physical systems are characterized by inherent symmetries, one of which is encapsulated in theunits of their parameters and system states. These symmetries enable a lossless order-reduction, e.g.,via dimensional analysis based on the Buckingham theorem. Despite the latter's benefits, machinelearning (ML) strategies for the discovery of constitutive laws seldom subject experimental and/ornumerical data to dimensional analysis. We demonstrate the potential of dimensional analysis to significantlyenhance the interpretability and generalizability of ML-discovered secondary laws. Ournumerical experiments with creeping fluid flow past solid ellipsoids show how dimensional analysisenables both deep neural networks and sparse regression to reproduce old results, e.g., Stokes law fora sphere, and generate new ones, e.g., an expression for an ellipsoid misaligned with the flow direction.Our results suggest the need to incorporate other physics-based symmetries and invariancesinto ML-based techniques for equation discovery.more » « lessFree, publicly-accessible full text available January 1, 2025
-
Srivastava, Apoorv ; Kang, Wei ; Tartakovsky, Daniel M ( , Journal of Computational Physics)
-
Boso, F. ; Tartakovsky, D.M. ( , Journal of Computational Physics)