K-means clustering is a widely used machine learning method for identifying patterns in large datasets. Recently, semidefinite programming (SDP) relaxations have been proposed for solving the K-means optimization problem, which enjoy strong statistical optimality guarantees. However, the prohibitive cost of implementing an SDP solver renders these guarantees inaccessible to practical datasets. In contrast, nonnegative matrix factorization (NMF) is a simple clustering algorithm widely used by machine learning practitioners, but it lacks a solid statistical underpinning and theoretical guarantees. In this paper, we consider an NMF-like algorithm that solves a nonnegative low-rank restriction of the SDP-relaxed K-means formulation using a nonconvex Burer--Monteiro factorization approach. The resulting algorithm is as simple and scalable as state-of-the-art NMF algorithms while also enjoying the same strong statistical optimality guarantees as the SDP. In our experiments, we observe that our algorithm achieves significantly smaller mis-clustering errors compared to the existing state-of-the-art while maintaining scalability.
more »
« less
This content will become publicly available on December 15, 2025
On Rank Selection for Nonnegative Matrix Factorization
Rank selection, i.e. the choice of factorization rank, is the first step in constructing Nonnegative Matrix Factorization (NMF) models. It is a long-standing problem which is not unique to NMF, but arises in most models which attempt to decompose data into its underlying components. Since these models are often used in the unsupervised setting, the rank selection problem is further complicated by the lack of ground truth labels. In this paper, we review and empirically evaluate the most commonly used schemes for NMF rank selection.
more »
« less
- Award ID(s):
- 2106920
- PAR ID:
- 10618211
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-6248-0
- Page Range / eLocation ID:
- 1294 to 1301
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper explores an inverse approach to the problem of characterizing sediment sources' (“source” samples) age distributions based on samples from a particular depocenter (“sink” samples) using non-negative matrix factorization (NMF). It also outlines a method to determine the optimal number of sources to factorize from a set of sink samples (i.e., the optimum factorization rank). We demonstrate the power of this method by generating sink samples as random mixtures of known sources, factorizing them, and recovering the number of known sources, their age distributions, and the weighting functions used to generate the sink samples. Sensitivity testing indicates that similarity between factorized and known sources is positively correlated to 1) the number of sink samples, 2) the dissimilarity among sink samples, and 3) sink sample size. Specifically, the algorithm yields consistent, close similarity between factorized and known sources when the number of sink samples is more than ∼3 times the number of source samples, sink data sets are internally dissimilar (cross-correlation coefficient range >0.3, Kuiper V value range >0.35), and sink samples are well-characterized (>150–225 data points). However, similarity between known and factorized sources can be maintained while decreasing some of these variables if other variables are increased. Factorization of three empirical detrital zircon U–Pb data sets from the Book Cliffs, the Grand Canyon, and the Gulf of Mexico yields plausible source age distributions and weights. Factorization of the Book Cliffs data set yields five sources very similar to those recently independently proposed as the primary sources for Book Cliffs strata; confirming the utility of the NMF approach. The Grand Canyon data set exemplifies two general considerations when applying the NMF algorithm. First, although the NMF algorithm is able to identify source age distribution, additional geological details are required to discriminate between primary or recycled sources. Second, the NMF algorithm will identify the most basic elements of the mixed sink samples and so may subdivide sources that are themselves heterogeneous mixtures of more basic elements into those basic elements. Finally, application to a large Gulf of Mexico data set highlights the increased contribution from Appalachian sources during Cretaceous and Holocene time, potentially attributable to drainage reorganization. Although the algorithm reproduces known sources and yields reasonable sources for empirical data sets, inversions are inherently non-unique. Consequently, the results of NMF and their interpretations should be evaluated in light of independent geological evidence. The NMF algorithm is provided both as MATLAB code and a stand-alone graphical user interface for Windows and macOS (.exe and .app) along with all data sets discussed in this contribution.more » « less
-
Non-negative matrix factorization (NMF), the problem of finding two non-negative low-rank factors whose product approximates an input matrix, is a useful tool for many data mining and scientific applications such as topic modeling in text mining and unmixing in microscopy. In this paper, we focus on scaling algorithms for NMF to very large sparse datasets and massively parallel machines by employing effective algorithms, communication patterns, and partitioning schemes that leverage the sparsity of the input matrix. We consider two previous works developed for related problems,one that uses a fine-grained partitioning strategy using a point-to-point communication pattern and one that uses a Cartesian, or checkerboard, partitioning strategy using a collective-based communication pattern. We show that a combination of the previous approaches balances the demands of the various computations within NMF algorithms and achieves high efficiency and scalability. From the experiments, we see that our proposed strategy runs up to 10x faster than the state of the art on real-world datasets.more » « less
-
null (Ed.)Nonnegative Matrix Factorization (NMF) is broadly used to determine class membership in a variety of clustering applications. From movie recommendations and image clustering to visual feature extractions, NMF has applications to solve a large number of knowledge discovery and data mining problems. Traditional optimization methods, such as the Multiplicative Updating Algorithm (MUA), solves the NMF problem by utilizing an auxiliary function to ensure that the objective monotonically decreases. Although the objective in MUA converges, there exists no proof to show that the learned matrix factors converge as well. Without this rigorous analysis, the clustering performance and stability of the NMF algorithms cannot be guaranteed. To address this knowledge gap, in this article, we study the factor-bounded NMF problem and provide a solution algorithm with proven convergence by rigorous mathematical analysis, which ensures that both the objective and matrix factors converge. In addition, we show the relationship between MUA and our solution followed by an analysis of the convergence of MUA. Experiments on both toy data and real-world datasets validate the correctness of our proposed method and its utility as an effective clustering algorithm.more » « less
-
This work revisits the classical low-rank matrix factorization problem and unveils the critical role of initialization in shaping convergence rates for such nonconvex and nonsmooth optimization. We introduce Nystrom initialization, which significantly improves the global convergence of Scaled Gradient Descent (ScaledGD) in both symmetric and asymmetric matrix factorization tasks. Specifically, we prove that ScaledGD with Nystrom initialization achieves quadratic convergence in cases where only linear rates were previously known. Furthermore, we extend this initialization to low-rank adapters (LoRA) commonly used for finetuning foundation models. Our approach, NoRA, i.e., LoRA with Nystrom initialization, demonstrates superior performance across various downstream tasks and model scales, from 1B to 7B parameters, in large language and diffusion models.more » « less
An official website of the United States government
