The spectral properties of traditional (dyadic) graphs, where an edge connects exactly two vertices, are widely studied in different applications. These spectral properties are closely connected to the structural properties of dyadic graphs. We generalize such connections and characterize higher-order networks by their spectral information. We first split the higher-order graphs by their “edge orders” into several uniform hypergraphs. For each uniform hypergraph, we extract the corresponding spectral information from the transition matrices of carefully designed random walks. From each spectrum, we compute the first few spectral moments and use all such spectral moments across different “edge orders” as the higher-order graph representation. We show that these moments not only clearly indicate the return probabilities of random walks but are also closely related to various higher-order network properties such as degree distribution and clustering coefficient. Extensive experiments show the utility of this new representation in various settings. For instance, graph classification on higher-order graphs shows that this representation significantly outperforms other techniques.
more »
« less
This content will become publicly available on February 1, 2026
Alignment and comparison of directed networks via transition couplings of random walks
We describe and study a transport-based procedure called network optimal transition coupling (NetOTC) for the comparison and alignment of two networks. The networks of interest may be directed or undirected, weighted or unweighted, and may have distinct vertex sets of different sizes. Given two networks and a cost function relating their vertices, NetOTC finds a transition coupling of their associated random walks having minimum expected cost. The minimizing cost quantifies the difference between the networks, while the optimal transport plan itself provides alignments of both the vertices and the edges of the two networks. Coupling of the full random walks, rather than their marginal distributions, ensures that NetOTC captures local and global information about the networks and preserves edges. NetOTC has no free parameters and does not rely on randomization. We investigate a number of theoretical properties of NetOTC and present experiments establishing its empirical performance.
more »
« less
- Award ID(s):
- 2113676
- PAR ID:
- 10618280
- Editor(s):
- Yao, Q
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- Journal of the Royal Statistical Society Series B
- ISSN:
- 2397-2335
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We show that for every integer and large , every properly edge‐colored graph on vertices with at least edges contains a rainbow subdivision of . This is sharp up to a polylogarithmic factor. Our proof method exploits the connection between the mixing time of random walks and expansion in graphs.more » « less
-
The random order graph streaming model has received significant attention recently, with problems such as matching size estimation, component counting, and the evaluation of bounded degree constant query testable properties shown to admit surprisingly space efficient algorithms. The main result of this paper is a space efficient single pass random order streaming algorithm for simulating nearly independent random walks that start at uniformly random vertices. We show that the distribution of k-step walks from b vertices chosen uniformly at random can be approximated up to error ∊ per walk using  words of space with a single pass over a randomly ordered stream of edges, solving an open problem of Peng and Sohler [SODA '18]. Applications of our result include the estimation of the average return probability of the k-step walk (the trace of the kth power of the random walk matrix) as well as the estimation of PageRank. We complement our algorithm with a strong impossibility result for directed graphs.more » « less
-
A new algorithm is presented to compute nonrigid, possibly partial comparisons of shapes defined by unstructured triangulations of their surfaces. The algorithm takes as input a pair of surfaces with each surface given by a distinct and unrelated triangulation. Its goal is to define a possibly partial correspondence between the vertices of the two triangulations, with a cost associated with this correspondence that can serve as a measure of the similarity of the two shapes. To find this correspondence, the vertices in each triangulation are characterized by a signature vector of features. We tested both the LD-SIFT signatures, based on the concept of spin images, and the wave kernel signatures obtained by solving the Shrödinger equation on the triangulation. A cost matrix C is constructed such that C(k,l) is the norm of the difference of the signature vectors of vertices k and l. The correspondence between the triangulations is then computed as the transport plan that solves the optimal transport or optimal partial transport problem between their sets of vertices. We use a statistical physics approach to solve these problems. The presentation of the proposed algorithm is complemented with examples that illustrate its effectiveness and manageable computing cost.more » « less
-
Given a weighted graph G(V, E) and t ≥ 1, a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-cost subsetwise spanner problem to one where vertices appear on multiple levels, which we call the multi-level graph spanner (MLGS) problem, and describe two simple heuristics. Applications of this problem include road/network building and multi-level graph visualization, especially where vertices may require different grades of service. We formulate a 0–1 integer linear program (ILP) of size O(|E||V |2) for the more general minimum pairwise spanner problem, which resolves an open question by Sigurd and Zachariasen on whether this problem admits a useful polynomial-size ILP. We extend this ILP formulation to the MLGS problem, and evaluate the heuristic and ILP performance on random graphs of up to 100 vertices and 500 edges.more » « less
An official website of the United States government
