skip to main content

Title: Approximation algorithms and an integer program for multi-level graph spanners
Given a weighted graph G(V, E) and t ≥ 1, a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-cost subsetwise spanner problem to one where vertices appear on multiple levels, which we call the multi-level graph spanner (MLGS) problem, and describe two simple heuristics. Applications of this problem include road/network building and multi-level graph visualization, especially where vertices may require different grades of service. We formulate a 0–1 integer linear program (ILP) of size O(|E||V |2) for the more general minimum pairwise spanner problem, which resolves an open question by Sigurd and Zachariasen on whether this problem admits a useful polynomial-size ILP. We extend this ILP formulation to the MLGS problem, and evaluate the heuristic and ILP performance on random graphs of up to 100 vertices and 500 edges.
Authors:
; ; ; ; ;
Award ID(s):
1839274 1712119 1740858
Publication Date:
NSF-PAR ID:
10109412
Journal Name:
Symposium on Experimental Algorithms
Sponsoring Org:
National Science Foundation
More Like this
  1. Given a graph G = (V, E) and a subset T ⊆ V of terminals, a Steiner tree of G is a tree that spans T. In the vertex-weighted Steiner tree (VST) problem, each vertex is assigned a non-negative weight, and the goal is to compute a minimum weight Steiner tree of G. Vertex-weighted problems have applications in network design and routing, where there are different costs for installing or maintaining facilities at different vertices. We study a natural generalization of the VST problem motivated by multi-level graph construction, the vertex-weighted grade-of-service Steiner tree problem (V-GSST), which can be stated as follows: given a graph G and terminals T, where each terminal v ∈ T requires a facility of a minimum grade of service R(v) ∈ {1, 2, . . . `}, compute a Steiner tree G0 by installing facilities on a subset of vertices, such that any two vertices requiring a certain grade of service are connected by a path in G 0 with the minimum grade of service or better. Facilities of higher grade are more costly than facilities of lower grade. Multi-level variants such as this one can be useful in network design problems where vertices maymore »require facilities of varying priority. While similar problems have been studied in the edge-weighted case, they have not been studied as well in the more general vertex-weighted case. We first describe a simple heuristic for the V-GSST problem whose approximation ratio depends on `, the number of grades of service. We then generalize the greedy algorithm of [Klein & Ravi, 1995] to show that the V-GSST problem admits a (2 ln |T|)-approximation, where T is the set of terminals requiring some facility. This result is surprising, as it shows that the (seemingly harder) multi-grade problem can be approximated as well as the VST problem, and that the approximation ratio does not depend on the number of grades of service. Finally, we show that this problem is a special case of the directed Steiner tree problem and provide an integer linear programming (ILP) formulation for the V-GSST problem.« less
  2. In the classical Steiner tree problem, given an undirected, connected graph G=(V,E) with non-negative edge costs and a set of terminals T⊆V, the objective is to find a minimum-cost tree E′⊆E that spans the terminals. The problem is APX-hard; the best known approximation algorithm has a ratio of ρ=ln(4)+ε<1.39. In this paper, we study a natural generalization, the multi-level Steiner tree (MLST) problem: given a nested sequence of terminals Tℓ⊂⋯⊂T1⊆V, compute nested trees Eℓ⊆⋯⊆E1⊆E that span the corresponding terminal sets with minimum total cost. The MLST problem and variants thereof have been studied under various names including Multi-level Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-Tier tree. Several approximation results are known. We first present two simple O(ℓ)-approximation heuristics. Based on these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio using at most 2ℓ Steiner tree computations. We compare these heuristics experimentally on various instances of up to 500 vertices using three different network generation models. We also present various integer linear programming (ILP) formulations for the MLST problem, and compare their running timesmore »on these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to ℓ=100 levels, which is sufficient for most applications such as network visualization or designing multi-level infrastructure.« less
  3. In the classical Steiner tree problem, given an undirected, connected graph G =( V , E ) with non-negative edge costs and a set of terminals T ⊆ V , the objective is to find a minimum-cost tree E &prime ⊆ E that spans the terminals. The problem is APX-hard; the best-known approximation algorithm has a ratio of ρ = ln (4)+ε < 1.39. In this article, we study a natural generalization, the multi-level Steiner tree (MLST) problem: Given a nested sequence of terminals T ℓ ⊂ … ⊂ T 1 ⊆ V , compute nested trees E ℓ ⊆ … ⊆ E 1 ⊆ E that span the corresponding terminal sets with minimum total cost. The MLST problem and variants thereof have been studied under various names, including Multi-level Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-tier tree. Several approximation results are known. We first present two simple O (ℓ)-approximation heuristics. Based on these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio using at most 2ℓ Steiner tree computations. We compare these heuristicsmore »experimentally on various instances of up to 500 vertices using three different network generation models. We also present several integer linear programming formulations for the MLST problem and compare their running times on these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to ℓ = 100 levels, which is sufficient for most applications, such as network visualization or designing multi-level infrastructure.« less
  4. The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Benczúr and Karger (1996) showed that given any n-vertex undirected weighted graph G and a parameter ε ∈ (0,1), there is a near-linear time algorithm that outputs a weighted subgraph G' of G of size Õ(n/ε²) such that the weight of every cut in G is preserved to within a (1 ± ε)-factor in G'. The graph G' is referred to as a (1 ± ε)-approximate cut sparsifier of G. Subsequent recent work has obtained a similar result for the more general problem of hypergraph cut sparsifiers. However, all known sparsification algorithms require Ω(n + m) time where n denotes the number of vertices and m denotes the number of hyperedges in the hypergraph. Since m can be exponentially large in n, a natural question is if it is possible to create a hypergraph cut sparsifier in time polynomial in n, independent of the number of edges. We resolve this question in the affirmative, giving the first sublinear time algorithm for this problem, given appropriate query access to the hypergraph. Specifically, we designmore »an algorithm that constructs a (1 ± ε)-approximate cut sparsifier of a hypergraph H(V,E) in polynomial time in n, independent of the number of hyperedges, when given access to the hypergraph using the following two queries: 1) given any cut (S, ̄S), return the size |δ_E(S)| (cut value queries); and 2) given any cut (S, ̄S), return a uniformly at random edge crossing the cut (cut edge sample queries). Our algorithm outputs a sparsifier with Õ(n/ε²) edges, which is essentially optimal. We then extend our results to show that cut value and cut edge sample queries can also be used to construct hypergraph spectral sparsifiers in poly(n) time, independent of the number of hyperedges. We complement the algorithmic results above by showing that any algorithm that has access to only one of the above two types of queries can not give a hypergraph cut sparsifier in time that is polynomial in n. Finally, we show that our algorithmic results also hold if we replace the cut edge sample queries with a pair neighbor sample query that for any pair of vertices, returns a random edge incident on them. In contrast, we show that having access only to cut value queries and queries that return a random edge incident on a given single vertex, is not sufficient.« less
  5. Given a user-specified minimum degree threshold γ, a γ-quasi-clique is a subgraph where each vertex connects to at least γ fraction of the other vertices. Quasi-clique is a natural definition for dense structures, so finding large and hence statistically significant quasi-cliques is useful in applications such as community detection in social networks and discovering significant biomolecule structures and pathways. However, mining maximal quasi-cliques is notoriously expensive, and even a recent algorithm for mining large maximal quasi-cliques is flawed and can lead to a lot of repeated searches. This paper proposes a parallel solution for mining maximal quasi-cliques that is able to fully utilize CPU cores. Our solution utilizes divide and conquer to decompose the workloads into independent tasks for parallel mining, and we addressed the problem of (i) drastic load imbalance among different tasks and (ii) difficulty in predicting the task running time and the time growth with task subgraph size, by (a) using a timeout-based task decomposition strategy, and by (b) utilizing a priority task queue to schedule long-running tasks earlier for mining and decomposition to avoid stragglers. Unlike our conference version in PVLDB 2020 where the solution was built on a distributed graph mining framework called G-thinker, thismore »paper targets a single-machine multi-core environment which is more accessible to an average end user. A general framework called T-thinker is developed to facilitate the programming of parallel programs for algorithms that adopt divide and conquer, including but not limited to our quasi-clique mining algorithm. Additionally, we consider the problem of directly mining large quasi-cliques from dense parts of a graph, where we identify the repeated search issue of a recent method and address it using a carefully designed concurrent trie data structure. Extensive experiments verify that our parallel solution scales well with the number of CPU cores, achieving 26.68× runtime speedup when mining a graph with 3.77M vertices and 16.5M edges with 32 mining threads. Additionally, mining large quasi-cliques from dense parts can provide an additional speedup of up to 89.46×.« less