skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Mesoscopic flow simulation to understand the percolation through fine-ground electronic waste particle bed
Mechanical size reduction is a critical pretreatment for hydrometallurgical recovery of valuable metals in electronic waste. The particle size resulting from milling ranges from a few micrometers to a few millimeters, presenting challenges of achieving sufficient leaching percolation in portions occupied by fine particles. This work investigates the hydrodynamics of percolation through micrometer-sized fine particle beds by using many-body dissipative particle dynamics flow simulations. The results show that higher effective pore size resulting from high aspect-ratio particle packing contributes to higher permeability than spherical particle packing. Increasing surface wettability enhances maximum saturation rates but reduces permeability. Moreover, increasing tortuosity negatively impacts permeability and the degree of reduction in permeability caused by increased surface wettability decreases with increasing tortuosity. These findings imply possible complex relationships between tortuosity, pore size, and surface wettability that collectively impact percolation in loosely packed fine particle beds and can be used to guide improvement in pretreatment.  more » « less
Award ID(s):
2204011 2103967
PAR ID:
10618379
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Powder Technology
Volume:
454
ISSN:
0032-5910
Page Range / eLocation ID:
120703
Subject(s) / Keyword(s):
Dissipative particle dynamics Apparent permeability Wettability Saturation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Static granular packings play a central role in numerous industrial applications and natural settings. In these situations, fluid or fine particle flow through a bed of static particles is heavily influenced by the narrowest passage connecting the pores of the packing, commonly referred to as pore throats, or constrictions. Existing studies predominantly assume monodisperse rigid particles, but this is an oversimplification of the problem. In this work, we illustrate the connection between pore throat size, polydispersity, and particle deformation in a packed bed of spherical particles. Simple analytical expressions are provided to link these properties of the packing, followed by examples from Discrete Element Method (DEM) simulations of fine particle percolation demonstrating the impact of polydispersity and particle deformation. Our intent is to emphasize the substantial impact of polydispersity and particle deformation on constriction size, underscoring the importance of accounting for these effects in particle transport in granular packings. 
    more » « less
  2. Herein, we present a systematic investigation of the impact of silica nanoparticle (SiNP) size and surface chemistry on the nanoparticle dispersion state and the resulting morphology and vanadium ion permeability of the composite ionomer membranes. Specifically, Nafion containing a mass fraction of 5% silica particles, ranging in nominal diameters from 10 nm to >1 μm and with both sulfonic acid- and amine-functionalized surfaces, was fabricated. Most notably, an 80% reduction in vanadium ion permeability was observed for ionomer membranes containing amine-functionalized SiNPs at a nominal diameter of 200 nm. Further, these membranes exhibited an almost 400% increase in proton selectivity when compared to pristine Nafion. Trends in vanadium ion permeability within a particular nominal diameter were seen to be a function of the surface chemistry, where, for example, vanadyl ion permeability was observed to increase with increasing particle size for membranes containing unfunctionalized SiNPs, while it was seen to remain relatively constant for membranes containing amine-functionalized SiNPs. In general, the silica particles tended to exhibit a higher extent of aggregation as the size of the particles was increased. From small-angle neutron scattering experiments, an increase in the spacing of the hydrophobic domains was observed for all composite membranes, though particle size and surface chemistry were seen to have varying impacts on the spacing of the ionic domains of the ionomer. 
    more » « less
  3. Abstract Sea-ice pore microstructure constrains ice transport properties, affecting fluid flow relevant to oil-in-ice transport and biogeochemical processes. Motivated by a lack of pore microstructural data, in particular for granular ice and across the seasonal cycle, throat size, tortuosity, connectivity, and other microstructural variables were derived from X-ray computed tomography for brine-filled pores in seasonal landfast ice off northern Alaska. Data were obtained for granular and columnar ice during the ice growth, transition, and melt season. While granular ice exhibits a more heterogeneous pore space than columnar ice, pore and throat size distributions are comparable. The greater tortuosity of pores in granular (1.2 < τ g < 1.7) compared to columnar ice (1.0 < τ c < 1.1) compounded with a less interconnected pore space translates into lower permeability for granular ice during the growth season for a given porosity. The microstructural data explain findings of granular ice hindering vertical oil-in-ice transport during ice growth and transition stage. With granular ice more frequent in the changing Arctic, data from studies such as this are needed to inform improved modeling of porosity-permeability relationships. 
    more » « less
  4. Pore-scale modeling is essential in understanding and predicting flow and transport properties of rocks. Generally, pore-scale modeling is dependent on imaging technologies such as Micro Computed Tomography (micro-CT), which provides visual confirmation into the pore microstructures of rocks at a representative scale. However, this technique is limited in the ability to provide high resolution images showing the pore-throats connecting pore bodies. Pore scale simulations of flow and transport properties of rocks are generally done on a single 3D pore microstructure image. As such, the simulated properties are only representative of the simulated pore-scale rock volume. These are the technological and computational limitations which we address here by using a stochastic pore-scale simulation approach. This approach consists of constructing hundreds of 3D pore microstructures of the same pore size distribution and overall porosity but different pore connectivity. The construction of the 3D pore microstructures incorporates the use of Mercury Injection Capillary Pressure (MICP) data to account for pore throat size distribution, and micro-CT images to account for pore body size distribution. The approach requires a small micro-CT image volume (7–19 mm3) to reveal key pore microstructural features that control flow and transport properties of highly heterogeneous rocks at the core-scale. Four carbonate rock samples were used to test the proposed approach. Permeability calculations from the introduced approach were validated by comparing laboratory measured permeability of rock cores and permeability estimated using five well-known core-scale empirical model equations. The results show that accounting for the stochastic connectivity of pores results in a probabilistic distribution of flow properties which can be used to upscale pore-scale simulated flow properties to the core-scale. The use of the introduced stochastic pore-scale simulation approach is more beneficial when there is a higher degree of heterogeneity in pore size distribution. This is shown to be the case with permeability and hydraulic tortuosity which are key controls of flow and transport processes in rocks. 
    more » « less
  5. null (Ed.)
    Abstract This paper reports a study on the effects of particle size distribution (tuned by mixing different-sized powders) on density of a densely packed powder, powder bed density, and sintered density in binder jetting additive manufacturing. An analytical model was used first to study the mixture packing density. Analytical results showed that multimodal (bimodal or trimodal) mixtures could achieve a higher packing density than their component powders and there existed an optimal mixing fraction to achieve the maximum mixture packing density. Both a lower component particle size ratio (fine to coarse) and a larger component packing density ratio (fine to coarse) led to a larger maximum mixture packing density. A threshold existed for the component packing density ratio, below which the mixing method was not effective for density improvement. Its relationship to the component particle size ratio was calculated and plotted. In addition, the dependence of the optimal mixing fraction and maximum mixture packing density on the component particle size ratio and component packing density ratio was calculated and plotted. These plots can be used as theoretical tools to select parameters for the mixing method. Experimental results of tap density were consistent with the above-mentioned analytical predictions. Also, experimental measurements showed that powders with multimodal particle size distributions achieved a higher tap density, powder bed density, and sintered density in most cases. 
    more » « less