skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 19, 2026

Title: Enhancing talk moves analysis in mathematics tutoring through classroom teaching discourse
Human tutoring interventions play a crucial role in supporting student learning, improving academic performance, and promoting personal growth. This paper focuses on analyzing mathematics tutoring discourse using talk moves—a framework of dialogue acts grounded in Accountable Talk theory. However, scaling the collection, annotation, and analysis of extensive tutoring dialogues to develop machine learning models is a challenging and resource-intensive task. To address this, we present SAGA22, a compact dataset, and explore various modeling strategies, including dialogue context, speaker information, pretraining datasets, and further fine-tuning. By leveraging existing datasets and models designed for classroom teaching, our results demonstrate that supplementary pretraining on classroom data enhances model performance in tutoring settings, particularly when incorporating longer context and speaker information. Additionally, we conduct extensive ablation studies to underscore the challenges in talk move modeling.  more » « less
Award ID(s):
2222647
PAR ID:
10618420
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Editor(s):
Rambow, Owen; Wanner, Owen; Apidianaki, Marianna; Al-Khalifa, Hend; Di_Eugenio, Barbara; Schockaert, Steven
Publisher / Repository:
Association for Computational Linguistics
Date Published:
ISBN:
979-8-89176-197-1
Page Range / eLocation ID:
7671–7684
Format(s):
Medium: X
Location:
Abu Dhabi, UAE
Sponsoring Org:
National Science Foundation
More Like this
  1. Rambow, Owen; Wanner, Leo; Apidianaki, Marianna; Al-Khalifa, Hend; Di_Eugenio, Barbara; Schockaert, Steven (Ed.)
    Human tutoring interventions play a crucial role in supporting student learning, improving academic performance, and promoting personal growth. This paper focuses on analyzing mathematics tutoring discourse using talk moves—a framework of dialogue acts grounded in Accountable Talk theory. However, scaling the collection, annotation, and analysis of extensive tutoring dialogues to develop machine learning models is a challenging and resource-intensive task. To address this, we present SAGA22, a compact dataset, and explore various modeling strategies, including dialogue context, speaker information, pretraining datasets, and further fine-tuning. By leveraging existing datasets and models designed for classroom teaching, our results demonstrate that supplementary pretraining on classroom data enhances model performance in tutoring settings, particularly when incorporating longer context and speaker information. Additionally, we conduct extensive ablation studies to underscore the challenges in talk move modeling. 
    more » « less
  2. Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosuè; Paquette, Luc (Ed.)
    Effective feedback is essential for refining instructional practices in mathematics education, and researchers often turn to advanced natural language processing (NLP) models to analyze classroom dialogues from multiple perspectives. However, utterance-level discourse analysis encounters two primary challenges: (1) multi-functionality, where a single utterance may serve multiple purposes that a single tag cannot capture, and (2) the exclusion of many utterances from domain-specific discourse move classifications, leading to their omission in feedback. To address these challenges, we proposed a multi-perspective discourse analysis that integrates domain-specific talk moves with dialogue act (using the flattened multi-functional SWBD-MASL schema with 43 tags) and discourse relation (applying Segmented Discourse Representation Theory with 16 relations). Our top-down analysis framework enables a comprehensive understanding of utterances that contain talk moves, as well as utterances that do not contain talk moves. This is applied to two mathematics education datasets: TalkMoves (teaching) and SAGA22 (tutoring). Through distributional unigram analysis, sequential talk move analysis, and multi-view deep dive, we discovered meaningful discourse patterns, and revealed the vital role of utterances without talk moves, demonstrating that these utterances, far from being mere fillers, serve crucial functions in guiding, acknowledging, and structuring classroom discourse. These insights underscore the importance of incorporating discourse relations and dialogue acts into AI-assisted education systems to enhance feedback and create more responsive learning environments. Our framework may prove helpful for providing human educator feedback, but also aiding in the development of AI agents that can effectively emulate the roles of both educators and students. 
    more » « less
  3. Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosue; Paquette, Luc (Ed.)
    in mathematics education, and researchers often turn to advanced natural language processing (NLP) models to analyze classroom dialogues from multiple perspectives. However, utterance-level discourse analysis encounters two primary challenges: (1) multifunctionality, where a single utterance may serve multiple purposes that a single tag cannot capture, and (2) the exclusion of many utterances from domain-specific discourse move classifications, leading to their omission in feedback. To address these challenges, we proposed a multi-perspective discourse analysis that integrates domain-specific talk moves with dialogue act (using the flattened multi-functional SWBD-MASL schema with 43 tags) and discourse relation (applying Segmented Discourse Representation Theory with 16 relations). Our top-down analysis framework enables a comprehensive understanding of utterances that contain talk moves, as well as utterances that do not contain talk moves. This is applied to two mathematics education datasets: TalkMoves (teaching) and SAGA22 (tutoring). Through distributional unigram analysis, sequential talk move analysis, and multi-view deep dive, we discovered meaningful discourse patterns, and revealed the vital role of utterances without talk moves, demonstrating that these utterances, far from being mere fillers, serve crucial functions in guiding, acknowledging, and structuring classroom discourse. These insights underscore the importance of incorporating discourse relations and dialogue acts into AI-assisted education systems to enhance feedback and create more responsive learning environments. Our framework may prove helpful for providing human educator feedback, but also aiding in the development of AI agents that can effectively emulate the roles of both educators and students. 
    more » « less
  4. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    One of the areas where Large Language Models (LLMs) show promise is for automated qualitative coding, typically framed as a text classification task in natural language processing (NLP). Their demonstrated ability to leverage in-context learning to operate well even in data-scarce settings poses the question of whether collecting and annotating large-scale data for training qualitative coding models is still beneficial. In this paper, we empirically investigate the performance of LLMs designed for use in prompting-based in-context learning settings, and draw a comparison to models that have been trained using the traditional pretraining--finetuning paradigm with task-specific annotated data, specifically for tasks involving qualitative coding of classroom dialog. Compared to other domains where NLP studies are typically situated, classroom dialog is much more natural and therefore messier. Moreover, tasks in this domain are nuanced and theoretically grounded and require a deep understanding of the conversational context. We provide a comprehensive evaluation across five datasets, including tasks such as talkmove prediction and collaborative problem solving skill identification. Our findings show that task-specific finetuning strongly outperforms in-context learning, showing the continuing need for high-quality annotated training datasets. 
    more » « less
  5. Olney, AM; Chounta, IA; Liu, Z; Santos, OC; Bittencourt, II (Ed.)
    This work investigates how tutoring discourse interacts with students’ proximal knowledge to explain and predict students’ learning outcomes. Our work is conducted in the context of high-dosage human tutoring where 9th-grade students attended small group tutorials and individually practiced problems on an Intelligent Tutoring System (ITS). We analyzed whether tutors’ talk moves and students’ performance on the ITS predicted scores on math learning assessments. We trained Random Forest Classifiers (RFCs) to distinguish high and low assessment scores based on tutor talk moves, student’s ITS performance metrics, and their combination. A decision tree was extracted from each RFC to yield an interpretable model. We found AUCs of 0.63 for talk moves, 0.66 for ITS, and 0.77 for their combination, suggesting interactivity among the two feature sources. Specifically, the best decision tree emerged from combining the tutor talk moves that encouraged rigorous thinking and students’ ITS mastery. In essence, tutor talk that encouraged mathematical reasoning predicted achievement for students who demonstrated high mastery on the ITS, whereas tutors’ revoicing of students’ mathematical ideas and contributions was predictive for students with low ITS mastery. Implications for practice are discussed. 
    more » « less