skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Determination of nuclear charge radius by extreme-ultraviolet spectroscopy of Na-like ions
We report on a method for determining the absolute nuclear charge radius of high- Z elements using extreme-ultraviolet spectroscopy of highly charged Na-like ions in tandem with highly accurate atomic structure calculations of transition energy differences. The application of this method has reduced the nuclear charge radius uncertainty of Ir 191 by a factor of 8 from the currently accepted literature value, with a recently reported charge radius of 5.435(12) fm. The result reduces the charge radius uncertainty along the full Ir isotopic chain when combined with prior optical isotope shift measurements. The technique utilizes only a few million ions stored in an ion trap, which should apply to measurements with small quantities of radioactive nuclei. Published by the American Physical Society2025  more » « less
Award ID(s):
2309273 2309274
PAR ID:
10618465
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Research
Volume:
7
Issue:
1
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Measurements of the difference between the squared charge radii of the helion ( He 3 nucleus) and the α particle ( He 4 nucleus) have been characterized by longstanding tensions recently spotlighted in the 3.6 σ discrepancy of the extractions from ordinary atoms versus those from muonic atoms [Karsten Schuhmann , ]. Here, we present a novel analysis of uncertainties in nuclear structure corrections that must be supplied by theory to enable the extraction of the difference in radii from spectroscopic experiments. We use modern Bayesian inference techniques to quantify uncertainties stemming from the truncation of the chiral effective field theory expansion of the nuclear force for both muonic and ordinary atoms. With the new nuclear structure input, the helium isotope-shift puzzle cannot be explained, rather, it is reinforced to a 4 σ discrepancy. Published by the American Physical Society2025 
    more » « less
  2. A comparative vacuum ultraviolet spectroscopy study conducted at ISOLDE-CERN of the radiative decay of the Th 229 m nuclear clock isomer embedded in different host materials is reported. The ratio of the number of radiative decay photons and the number of Th 229 m embedded are determined for single crystalline CaF 2 ,   MgF 2 ,   LiSrAlF 6 , AlN, and amorphous SiO 2 . For the latter two materials, no radiative decay signal was observed and an upper limit of the ratio is reported. The radiative decay wavelength was determined in LiSrAlF 6 and CaF 2 , reducing its uncertainty by a factor of 2.5 relative to our previous measurement. This value is in agreement with the recently reported improved values from laser excitation. Published by the American Physical Society2025 
    more » « less
  3. The nuclear two-photon or double-gamma ( 2 γ ) decay is a second-order electromagnetic process whereby a nucleus in an excited state emits two gamma rays simultaneously. To be able to directly measure the 2 γ decay rate in the low-energy regime below the electron-positron pair-creation threshold, we combined the isochronous mode of a storage ring with Schottky resonant cavities. The newly developed technique can be applied to isomers with excitation energies down to 100 keV and half-lives as short as 10 ms . The half-life for the 2 γ decay of the first-excited 0 + state in bare Ge 72 ions was determined to be 23.9(6) ms, which strongly deviates from expectations. Published by the American Physical Society2024 
    more » « less
  4. The strong coupling of atoms to optical cavities can improve optical lattice clocks as the cavity enables metrologically useful collective atomic entanglement and high-fidelity measurement. To this end, it is necessary to cool the ensemble to suppress motional broadening, and advantageous to maximize and homogenize the atom-cavity coupling. We demonstrate resolved Raman sideband cooling via the cavity as a method that can simultaneously achieve both goals. In 200 ms of Raman sideband cooling, we cool Yb 171 atoms to an average vibration number n x = 0.23 ( 7 ) in the tightly binding direction, resulting in 93 % optical π -pulse fidelity on the clock transition S 0 1 P 0 3 . During cooling, the atoms self-organize into locations with maximal atom-cavity coupling, which will improve quantum metrology applications. Published by the American Physical Society2024 
    more » « less
  5. New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarized LiD 6 target. The data were taken in 2022 with the COMPASS spectrometer using the 160 GeV muon beam at CERN, statistically balancing the existing data on transversely polarized proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements. Using all the COMPASS proton and deuteron results, both the transversity and the Sivers distribution functions of the u and d quark, as well as the tensor charge in the measured x range are extracted. In particular, the accuracy of the d quark results is significantly improved. Published by the American Physical Society2024 
    more » « less