skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Understanding the Influence of Image Enhancement on Underwater Object Detection: A Quantitative and Qualitative Study
Underwater image enhancement is often perceived as a disadvantageous process to object detection. We propose a novel analysis of the interactions between enhancement and detection, elaborating on the potential of enhancement to improve detection. In particular, we evaluate object detection performance for each individual image rather than across the entire set to allow a direct performance comparison of each image before and after enhancement. This approach enables the generation of unique queries to identify the outperforming and underperforming enhanced images compared to the original images. To accomplish this, we first produce enhanced image sets of the original images using recent image enhancement models. Each enhanced set is then divided into two groups: (1) images that outperform or match the performance of the original images and (2) images that underperform. Subsequently, we create mixed original-enhanced sets by replacing underperforming enhanced images with their corresponding original images. Next, we conduct a detailed analysis by evaluating all generated groups for quality and detection performance attributes. Finally, we perform an overlap analysis between the generated enhanced sets to identify cases where the enhanced images of different enhancement algorithms unanimously outperform, equally perform, or underperform the original images. Our analysis reveals that, when evaluated individually, most enhanced images achieve equal or superior performance compared to their original counterparts. The proposed method uncovers variations in detection performance that are not apparent in a whole set as opposed to a per-image evaluation because the latter reveals that only a small percentage of enhanced images cause an overall negative impact on detection. We also find that over-enhancement may lead to deteriorated object detection performance. Lastly, we note that enhanced images reveal hidden objects that were not annotated due to the low visibility of the original images.  more » « less
Award ID(s):
2244403
PAR ID:
10618506
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Remote Sensing
Volume:
17
Issue:
2
ISSN:
2072-4292
Page Range / eLocation ID:
185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Automatic video analysis tools are an indispensable component in imaging applications. Object detection, the first and the most important step for automatic video analysis, is implemented in many embedded cameras. The accuracy of object detection relies on the quality of images that are processed. This paper proposes a new image quality model for predicting the performance of object detection on embedded cameras. A video data set is constructed that considers different factors for quality degradation in the imaging process, such as reduced resolution, noise, and blur. The performances of commonly used low-complexity object detection algorithms are obtained for the data set. A no-reference regression model based on a bagging ensemble of regression trees is built to predict the accuracy of object detection using observable features in an image. Experimental results show that the proposed model provides more accurate predictions of image quality for object detection than commonly known image quality measures. 
    more » « less
  2. In this article we describe a novel enhancement method for images containing filamentous structures. Our method combines a gradient sparsity constraint with a filamentous structure constraint for effective removal of clutter and noise from the background. The method is applied and evaluated on three types of data: confocal microscopy images of neurons, calcium imaging data and images of road pavement. We found that images enhanced by our method preserve both the structure and the intensity details of the original object. In the case of neuron microscopy, we find that the neurons enhanced by our method are better correlated with the original structure intensities than the neurons enhanced by well-known vessel enhancement methods. Experiments on simulated calcium imaging data indicate that both the number of detected neurons and the accuracy of the derived calcium activity improved. Applying our method to real calcium data, more regions exhibiting calcium activity in the full field of view were found. In road pavement crack detection, smaller or milder cracks were detected after using our enhancement method. 
    more » « less
  3. Bayer pattern is a widely used Color Filter Array (CFA) for digital image sensors, efficiently capturing different light wavelengths on different pixels without the need for a costly ISP pipeline. The resulting single-channel raw Bayer images offer benefits such as spectral wavelength sensitivity and low time latency. However, object detection based on Bayer images has been underexplored due to challenges in human observation and algorithm design caused by the discontinuous color channels in adjacent pixels. To address this issue, we propose the BayerDetect network, an end-to-end deep object detection framework that aims to achieve fast, accurate, and memory-efficient object detection. Unlike RGB color images, where each pixel encodes spectral context from adjacent pixels during ISP color interpolation, raw Bayer images lack spectral context. To enhance the spectral context, the BayerDetect network introduces a spectral frequency attention block, transforming the raw Bayer image pattern to the frequency domain. In object detection, clear object boundaries are essential for accurate bounding box predictions. To handle the challenges posed by alternating spectral channels and mitigate the influence of discontinuous boundaries, the BayerDetect network incorporates a spatial attention scheme that utilizes deformable convolutional kernels in multiple scales to explore spatial context effectively. The extracted convolutional features are then passed through a sparse set of proposal boxes for detection and classification. We conducted experiments on both public and self-collected raw Bayer images, and the results demonstrate the superb performance of the BayerDetect network in object detection tasks. 
    more » « less
  4. Bayer pattern is a widely used Color Filter Array (CFA) for digital image sensors, efficiently capturing different light wavelengths on different pixels without the need for a costly ISP pipeline. The resulting single-channel raw Bayer images offer benefits such as spectral wavelength sensitivity and low time latency. However, object detection based on Bayer images has been underexplored due to challenges in human observation and algorithm design caused by the discontinuous color channels in adjacent pixels. To address this issue, we propose the BayerDetect network, an end-to-end deep object detection framework that aims to achieve fast, accurate, and memory-efficient object detection. Unlike RGB color images, where each pixel encodes spectral context from adjacent pixels during ISP color interpolation, raw Bayer images lack spectral context. To enhance the spectral context, the BayerDetect network introduces a spectral frequency attention block, transforming the raw Bayer image pattern to the frequency domain. In object detection, clear object boundaries are essential for accurate bounding box predictions. To handle the challenges posed by alternating spectral channels and mitigate the influence of discontinuous boundaries, the BayerDetect network incorporates a spatial attention scheme that utilizes deformable convolutional kernels in multiple scales to explore spatial context effectively. The extracted convolutional features are then passed through a sparse set of proposal boxes for detection and classification. We conducted experiments on both public and self-collected raw Bayer images, and the results demonstrate the superb performance of the BayerDetect network in object detection tasks. 
    more » « less
  5. A significant challenge in the field of object detection lies in the system's performance under non-ideal imaging conditions, such as rain, fog, low illumination, or raw Bayer images that lack ISP processing. Our study introduces "Feature Corrective Transfer Learning", a novel approach that leverages transfer learning and a bespoke loss function to facilitate the end-to-end detection of objects in these challenging scenarios without the need to convert non-ideal images into their RGB counterparts. In our methodology, we initially train a comprehensive model on a pristine RGB image dataset. Subsequently, non-ideal images are processed by comparing their feature maps against those from the initial ideal RGB model. This comparison employs the Extended Area Novel Structural Discrepancy Loss (EANSDL), a novel loss function designed to quantify similarities and integrate them into the detection loss. This approach refines the model's ability to perform object detection across varying conditions through direct feature map correction, encapsulating the essence of Feature Corrective Transfer Learning. Experimental validation on variants of the KITTI dataset demonstrates a significant improvement in mean Average Precision (mAP), resulting in a 3.8-8.1% relative enhancement in detection under non-ideal conditions compared to the baseline model, and a less marginal performance difference within 1.3% of the mAP@[0.5:0.95] achieved under ideal conditions by the standard Faster RCNN algorithm. 
    more » « less