Abstract Real‐time hybrid simulation (RTHS) involves dividing a structural system into numerical and experimental substructures. The experimental substructure is challenging to model analytically and is therefore modeled physically in the laboratory. Analytical substructures are conventionally modeled using the finite element method. The two substructures are kinematically linked, and the governing equations of motion are solved in real‐time. Thus, the state determination of the analytical substructure needs to occur within the timestep, which is of the order of a few milliseconds. All structural systems are supported by a soil‐foundation system and any evaluation of the efficacy of response modification devices placed in the structure should consider soil‐foundation structure interaction (SFSI) effects. SFSI adds compliance to a structural system, thereby altering the natural frequencies. Additionally, nonlinear behavior in the soil can result in residual deformations in the foundation and structure, as well as provide added damping. These effects can occur under both wind and earthquake loading. To overcome the barrier of the large computational effort required to model SFSI effects in real‐time using the conventional finite element approach, a neural network (NN) model is combined with an explicit‐based analytical substructure and experimental substructure with dampers to create a framework for performing RTHS with SFSI effects. The framework includes a block of long‐short term memory (LSTM) layers that is combined with a parallel rectified linear unit (ReLU) to form a NN model of the soil‐foundation system. RTHS of a tall 40‐story steel building equipped with nonlinear viscous dampers and subjected to a windstorm are performed to illustrate the framework. It was found that a number of factors have an effect on the quality of RTHS results. These include: (i) the discretization of the wind loading into bins of basic wind speed; (ii) the extent of the NN model training as determined by the root mean square error (RMSE); (iii) noise in the restoring forces produced by the NN model and its interaction with the integration algorithm; and, (iv) the bounding of outliers of the NN model's output. Guidelines for extending the framework for the RTHS of structures subjected to seismic loading are provided.
more »
« less
This content will become publicly available on July 1, 2026
Multi-physics framework for seismic Real-time Hybrid Simulation of soil–foundation–structural systems
Real-time Hybrid Simulation (RTHS) is a technique wherein a structural system is divided into an analytical and an experimental substructure. The former is modeled numerically while the latter is physically present in the laboratory. The two substructures are kinematically linked together at their interface degrees of freedom (DOFs) and the equations of motion are solved in real-time to determine the structure’s response. One of the main challenges of RTHS is to include the effects of soil–foundation–structure interaction (SFSI), which can have a substantial effect on the overall response. The soil domain cannot be modeled experimentally due to the large payload size. On the other hand, modeling the soil domain numerically, using a continuum-based approach, in real-time is challenging due to the associated computational cost. To address these issues, this paper presents a framework for seismic RTHS of SFSI systems using a Neural Network (NN)-based macroelement model of the soil–foundation system. A coupled SFSI model is used to train the NN model and the loss function is based on dynamic equilibrium at the interface between the foundation and the structure. The framework is demonstrated using a three-story building with the lateral load resisting system comprised of moment resisting and damped brace frames. The proposed framework ensures a stable and accurate RTHS, accounting for SFSI by incorporating: (a) spring elements at the output DOFs of the NN model to remove rigid body modes; (b) dashpot elements at the output DOFs of the NN model to mitigate spurious higher frequencies of vibration; and (c) regularization in the NN model’s architecture with data augmentation to reduce overfitting.
more »
« less
- Award ID(s):
- 2037771
- PAR ID:
- 10618623
- Editor(s):
- Yang, J
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Engineering Structures
- Volume:
- 334
- Issue:
- C
- ISSN:
- 0141-0296
- Page Range / eLocation ID:
- 120247
- Subject(s) / Keyword(s):
- Real-time hybrid simulation Seismic soil–structure interaction LSTM neural networks Macroelement modeling Real-time online model updating Nonlinear viscous dampers
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Real‐time hybrid simulation (RTHS) is an experimental testing methodology that divides a structural system into an analytical and an experimental substructure. The analytical substructure is modeled numerically, and the experimental substructure is modeled physically in the laboratory. The two substructures are kinematically linked together at their interface degrees of freedom, and the coupled equations of motion are solved in real‐time to obtain the response of the complete system. A key challenge in applying RTHS to large or complex structures is the limited availability of physical devices, which makes it difficult to represent all required experimental components simultaneously. The present study addresses this challenge by introducing Online Cyber‐Physical Neural Network (OCP‐NN) models–neural network‐based models of physical devices that are integrated in real‐time with the experimental substructure during an RTHS. The OCP‐NN framework leverages real‐time data from a single physical device (i.e., the experimental substructure) to replicate its behavior at other locations in the system, thereby significantly reducing the need for multiple physical devices. The proposed method is demonstrated through RTHS of a two‐story reinforced concrete frame subjected to seismic excitation and equipped with Banded Rotary Friction Dampers (BRFDs) in each story. BRFDs are challenging to model numerically due to their complex behavior which includes backlash, stick‐slip phenomena, and inherent device dynamics. Consequently, BRFDs were selected to demonstrate the proposed framework. In the RTHS, one BRFD is modeled physically by the experimental substructure, while the other is represented by the OCP‐NN model. The results indicate that the OCP‐NN model can accurately capture the behavior of the device in real‐time. This approach offers a practical solution for improving RTHS of complex structural systems with limited experimental resources.more » « less
-
Real-time hybrid simulation (RTHS) divides a structural system into analytical and experimental substructures that are coupled through their common degrees of freedom. This paper introduces a framework to enable RTHS to be performed on 3D nonlinear models of tall buildings with rate dependent nonlinear response modification devices, where the structure is subjected to multi-directional wind and earthquake natural hazards. A 40-story tall building prototype with damped outriggers is selected as a case study. The analytical substructure for the RTHS consists of a 3-D nonlinear model of the structure, where each member in the building is discretely modeled in conjunction with the use of a super element. The experimental substructure for the RTHS consists of a full-scale rate-dependent nonlinear viscous damper that is physically tested in the lab, with the remaining dampers in the outrigger system modeled analytically. The analytically modeled dampers use a stable explicit non-iterative element with an online model updating algorithm, by which the covariance matrix of the damper model’s state variables does not become ill-conditioned. The damper model parameters can thereby be updated in real-time using measured data from the experimental substructure. The explicit MKR-α method is optimized and used in conjunction with the super element to efficiently integrate the condensed equations of motion of a large complex model having more than 1000 nonlinear elements, thus enabling multi-axis earthquake and wind hybrid nonlinear simulations to be performed in real-time. An adaptive servo-hydraulic actuator control scheme is used to enable precise real-time actuator displacements in the experimental substructure to be achieved that match the target displacements during a RTHS. The IT real-time architecture for integrating the components of the framework is described. To assess the framework, 3D RTHS of the 40-story structure were performed involving multi-axis translational and torsional response to multi-directional earthquake and wind natural hazards. The RTHS technique was applied to perform half-power tests to experimentally determine the amount of supplemental damping provided by the damped outrigger system for translational and torsional modes of vibration of the building. The results from the study presented herein demonstrate that RTHS can be applied to large nonlinear large structural systems involving multi-axis response to multi-directional excitation.more » « less
-
Recent earthquakes in many parts of the world have resulted in damage to the civil infrastructure, resulting in fatalities and economic loss. This experience has resulted in stake holders demanding a more resilient infrastructure and the mitigation of earthquake hazards to minimize their impact on society. Researchers have developed concepts for structural steel systems to promote resilient performance. Real-time hybrid simulation (RTHS) provides an experimental technique to meet the need to validate new concepts. RTHS enables a complete structural system, including the soil and foundation to be considered in a simulation, interaction effects and rate dependency in component and system response to be accounted for, and realistic demand imposed onto the system for prescribed hazard levels. This paper presents the concept of RTHS and developments achieved at the Lehigh NHERI Experimental Facility that have advanced RTHS to enable accurate large-scale, multidirectional simulations involving multi-natural hazards to be performed. The role that hybrid simulation has played in these developments and how its use has enabled a deeper understanding of structural system behavior under seismic and wind loading will be discussed. Examples include self-centering steel moment resisting frame systems, braced frame systems with nonlinear viscous, and tall buildings with outriggers that are outfitted with nonlinear viscous.more » « less
-
A new friction device using band brake technology, termed the Banded Rotary Friction Damper (BRFD), has been fabricated at the NHERI Lehigh Experimental Facility. The damping mechanism is based on band brake technology and leverages a self-energizing mechanism to produce large damping forces with low input energy. The device is a second-generation BRFD, where the friction mechanism is achieved using two electric actuators. The BRFD generates a damping force as a function of the input force provided by the electric actuators, where the ratio of BRFD force output-to-electric actuator force input is equal to about 112. The paper presents the results of a study using real-time hybrid simulations (RTHS) to investigate the performance of the BRFD’s in mitigating seismic hazards of a two-story reinforced concrete building. The building has two and three special moment resisting frames (SMRFs) in the east-west and north-south directions, respectively. In order to perform the RTHS, the north south SMRF is considered and the BRFD along with a parallel elastic member is used as a base isolation system to mitigate the effects of earthquake hazards by reducing story drift and floor accelerations of the structure. For the RTHS the building and the elastic component of the isolator are part of the analytical substructure while the experimental substructure is comprised of the BRFD. The response of the structure is investigated involving six Maximum Considered Earthquake (MCE) hazard level events that includes three near-field and three far-field ground motions. The explicit, unconditionally stable dissipative Modified KR-α integration algorithm is used to accurately integrate the equations of motion during the RTHS. The model for the reinforced concrete building is created using explicit non-linear force-based fiber elements to discretely model each member of the structure. First, the details of the prototype of the BRFD are presented. Second, the details of the isolator system consisting of a linear spring element and the BRFD are discussed. Finally, the details of the RTHS study and the results are presented. The building’s inter-story peak and residual story drift from base-isolated and fixed-based conditions are compared. Results show that the proposed isolator system produces a significant reduction in both maximum inter-story drift and residual drift, and reduces the damage developed in the structure during the MCE.more » « less
An official website of the United States government
