Summary Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied.We developed an approach for clamping leaf‐to‐air vapor pressure difference (VPDleaf) to fixed values, and recorded robust reversible warming‐induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO2, and the temperature‐sensitive proteins, Phytochrome B (phyB) and EARLY‐FLOWERING‐3 (ELF3).We confirmed thatphot1‐5/phot2‐1leaves lacking blue‐light photoreceptors showed partially reduced warming‐induced stomatal opening. Furthermore, ABA‐biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly,Arabidopsis(dicot) andBrachypodium distachyon(monocot) mutants lacking guard cell CO2sensors and signaling mechanisms, includinght1,mpk12/mpk4‐gc, andcbc1/cbc2abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO2). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis.We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO2assimilation and stomatal CO2sensing. Additionally, increasing heat stress functions via a distinct photosynthesis‐uncoupled stomatal opening pathway.
more »
« less
CHUP1 restricts chloroplast movement and effector‐triggered immunity in epidermal cells
Summary Chloroplast Unusual Positioning 1 (CHUP1) plays an important role in the chloroplast avoidance and accumulation responses in mesophyll cells. In epidermal cells, prior research showed silencingCHUP1‐induced chloroplast stromules and amplified effector‐triggered immunity (ETI); however, the underlying mechanisms remain largely unknown.CHUP1 has a dual function in anchoring chloroplasts and recruiting chloroplast‐associated actin (cp‐actin) filaments for blue light‐induced movement. To determine which function is critical for ETI, we developed an approach to quantify chloroplast anchoring and movement in epidermal cells. Our data show that silencingNbCHUP1inNicotiana benthamianaplants increased epidermal chloroplast de‐anchoring and basal movement but did not fully disrupt blue light‐induced chloroplast movement.SilencingNbCHUP1auto‐activated epidermal chloroplast defense (ECD) responses including stromule formation, perinuclear chloroplast clustering, the epidermal chloroplast response (ECR), and the chloroplast reactive oxygen species (ROS), hydrogen peroxide (H2O2). These findings show chloroplast anchoring restricts a multifaceted ECD response.Our results also show that the accumulated chloroplastic H2O2inNbCHUP1‐silenced plants was not required for the increased basal epidermal chloroplast movement but was essential for increased stromules and enhanced ETI. This finding indicates that chloroplast de‐anchoring and H2O2play separate but essential roles during ETI.
more »
« less
- Award ID(s):
- 2054685
- PAR ID:
- 10618701
- Publisher / Repository:
- New Phytologist
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 244
- Issue:
- 5
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- 1864 to 1881
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nitric oxide (NO) is a key regulator of plant development, growth, and responses to the environment. Together with hydrogen peroxide (H2O2), NO modifies the structure and function of proteins, controlling redox signaling. Although NO has been studied extensively at the cellular and subcellular levels, very little is known about changes in NO content at the whole‐plant level.Here, we report on the development of an aboveground whole‐plant live imaging method for NO. Using mutants with altered NO levels, as well as an NO donor/scavenger, we demonstrate the specificity of the detection method for NO.Arabidopsis thalianaplants were found to produce a basal level of NO under control conditions. NO levels accumulated enzymatically in plants following heat stress applied to the entire plant, as well as in a systemic manner following different locally applied stimuli. Similar or opposing accumulation patterns were also found for NO and H2O2during the response of plants to different stimuli.Our findings reveal that NO accumulates during the systemic response of plants to a local stimulus. In addition, they shed new light on the intricate relationships between NO and H2O2. The new method reported opens the way for multiple future studies of NO's role in plant biology.more » « less
-
Summary Photoprotection against excess light via nonphotochemical quenching (NPQ) is indispensable for plant survival. However, slow NPQ relaxation under low light conditions can decrease yield of field‐grown crops up to 40%.Using semi‐high‐throughput assay, we quantified the kinetics of NPQ and photosystem II operating efficiency (ΦPSII) in a replicated field trial of more than 700 maize (Zea mays) genotypes across 2 yr. Parametrized kinetics data were used to conduct genome‐wide association studies.For six candidate genes involved in NPQ and ΦPSII kinetics in maize the loss of function alleles of orthologous genes in Arabidopsis (Arabidopsis thaliana) were characterized: two thioredoxin genes, and genes encoding a transporter in the chloroplast envelope, an initiator of chloroplast movement, a putative regulator of cell elongation and stomatal patterning, and a protein involved in plant energy homeostasis.Since maize and Arabidopsis are distantly related, we propose that genes involved in photoprotection and PSII function are conserved across vascular plants. The genes and naturally occurring functional alleles identified here considerably expand the toolbox to achieving a sustainable increase in crop productivity.more » « less
-
Societal Impact StatementThe invasive speciesS. alternifloraandP. australisare fast growing coastal wetland plants sequestering large amounts of carbon in the soil and protect coastlines against erosion and storm surges. In this global analysis, we found thatSpartinaandPhragmitesincrease methane but not nitrous oxide emissions, withPhragmiteshaving a lesser effect. The impact of the invasive species on emissions differed greatly among different types of native plant groups, providing valuable information to managers and policymakers during coastal wetland planning and restoration efforts. Further, our estimated net emissions per wetland plant group facilitate regional and national blue carbon estimates. SummaryGlobally,Spartina alternifloraandPhragmites australisare among the most pervasive invasive plants in coastal wetland ecosystems. Both species sequester large amounts of atmospheric carbon dioxide (CO2) and biogenic carbon in soils but also support production and emission of methane (CH4). In this study, we investigated the magnitude of their net greenhouse gas (GHG) release from invaded and non‐invaded habitats.We conducted a meta‐analysis of GHG fluxes associated with these two species and related soil carbon content and plant biomass in invaded coastal wetlands.Our results show that both invasive species increase CH4fluxes compared to uninvaded coastal wetlands, but they do not significantly affect CO2and N2O fluxes. The magnitude of emissions fromSpartinaandPhragmitesdiffers among native habitats. GHG fluxes, soil carbon and plant biomass ofSpartina‐invaded habitats were highest compared to uninvaded mudflats and succulent forb‐dominated wetlands, while being lower compared to uninvaded mangroves (except for CH4).This meta‐analysis highlights the important role of individual plant traits as drivers of change by invasive species on plant‐mediated carbon cycles.more » « less
-
Summary Plasmodesmata (PD) allow direct communication across the cellulosic plant cell wall, facilitating the intercellular movement of metabolites and signaling molecules within the symplast. InArabidopsis thalianaembryos with reduced levels of the chloroplast RNA helicase ISE2, intercellular trafficking and the number of branched PD were increased. We therefore investigated the relationship between alteredISE2expression and intercellular trafficking.Gene expression analyses in Arabidopsis tissues whereISE2expression was increased or decreased identified genes associated with the metabolism of glucosinolates (GLSs) as highly affected.Concomitant with changes in the expression of GLS‐related genes, plants with abnormalISE2expression contained altered GLS metabolic profiles compared with wild‐type (WT) counterparts. Indeed, changes in the expression of GLS‐associated genes led to altered intercellular trafficking in Arabidopsis leaves. Exogenous application of GLSs but not their breakdown products also resulted in altered intercellular trafficking.These changes in trafficking may be mediated by callose levels at PD as exogenous GLS treatment was sufficient to modulate plasmodesmal callose in WT plants. Furthermore, auxin metabolism was perturbed in plants with increased indole‐type GLS levels. These findings suggest that GLSs, which are themselves transported between cells via PD, can act on PD to regulate plasmodesmal trafficking capacity.more » « less
An official website of the United States government

