skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing Numerical Weather Prediction Utility of the Maryland Mesonet with Observing System Simulation Experiments
Abstract The Maryland Mesonet project will construct a network of 75 surface observing stations with aims that include mitigating the statewide impact of severe convective storms and improving analyses of records. The spatial configuration of mesonet stations is expected to affect the utility newly provided observations will have via data assimilation, making it desirable to study the effects of mesonet configuration. Furthermore, the impact associated with any observing system configuration is constrained by errors inherent to the prediction systems used to generate forecasts, which may change with future advances in data assimilation methodology, physical parameterization schemes, and resource availability. To address such possibilities, we perform sets of observing system simulation experiments using a high-resolution regional modeling system to assess the expected impact of four candidate mesonet configurations. Experiments cover seven 18-h case study events featuring moist convective regimes associated with severe weather over the state of Maryland and are performed using two versions of our experimental modeling system: a “standard-uncertainty” configuration tuned to be representative of existing convective-allowing prediction systems and a “constrained-uncertainty” configuration with reduced boundary condition and model error that reflects a possible trajectory for future prediction systems. We find that the assimilation of mesonet data produces definitive improvements to analysis fields below 1000 m that are mediated by modeling system uncertainty. Conversely, mesonet impact on forecast verification is inconclusive and strongly variable across verification metrics. The impact of mesonet configuration appears limited by a saturation effect that caps local analysis improvements past a minimal density of observing stations. Significance StatementThe Maryland Mesonet project will construct 75 surface observing stations to improve the analysis of records for Maryland’s surface weather conditions as well as predictions for severe weather events. The spatial placement of sensors is expected to influence the utility of a mesonet, making it desirable to optimize mesonet layouts. The utility provided by a mesonet may also be impacted by errors in prediction systems used to generate analyses and forecasts, which are themselves subject to change given future advances in prediction methods and resources. This study uses observing system simulation experiments (OSSEs)—which comprehensively simulate numerical weather prediction for a known “truth state” —to characterize improvement we may expect from mesonet observations and evaluate four potential mesonet configurations.  more » « less
Award ID(s):
1848363
PAR ID:
10618707
Author(s) / Creator(s):
;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Weather and Forecasting
Volume:
39
Issue:
12
ISSN:
0882-8156
Page Range / eLocation ID:
1849 to 1867
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Obtaining a faithful probabilistic depiction of moist convection is complicated by unknown errors in subgrid-scale physical parameterization schemes, invalid assumptions made by data assimilation (DA) techniques, and high system dimensionality. As an initial step toward untangling sources of uncertainty in convective weather regimes, we evaluate a novel Bayesian data assimilation methodology based on particle filtering within a WRF ensemble analysis and forecasting system. Unlike most geophysical DA methods, the particle filter (PF) represents prior and posterior error distributions nonparametrically rather than assuming a Gaussian distribution and can accept any type of likelihood function. This approach is known to reduce bias introduced by Gaussian approximations in low-dimensional and idealized contexts. The form of PF used in this research adopts a dimension-reduction strategy, making it affordable for typical weather applications. The present study examines posterior ensemble members and forecasts for select severe weather events between 2019 and 2020, comparing results from the PF with those from an ensemble Kalman filter (EnKF). We find that assimilating with a PF produces posterior quantities for microphysical variables that are more consistent with model climatology than comparable quantities from an EnKF, which we attribute to a reduction in DA bias. These differences are significant enough to impact the dynamic evolution of convective systems via cold pool strength and propagation, with impacts to forecast verification scores depending on the particular microphysics scheme. Our findings have broad implications for future approaches to the selection of physical parameterization schemes and parameter estimation within preexisting data assimilation frameworks. Significance StatementThe accurate prediction of severe storms using numerical weather models depends on effective parameterization schemes for small-scale processes and the assimilation of incomplete observational data in a manner that faithfully represents the probabilistic state of the atmosphere. Current generation methods for data assimilation typically assume a standard form for the error distributions of relevant quantities, which can introduce bias that not only hinders numerical prediction, but that can also confound the characterization of errors from the model itself. The current study performs data assimilation using a novel method that does not make such assumptions and explores characteristics of resulting model fields and forecasts that might make such a method useful for improving model parameterization schemes. 
    more » « less
  2. Abstract An ensemble postprocessing method is developed for the probabilistic prediction of severe weather (tornadoes, hail, and wind gusts) over the conterminous United States (CONUS). The method combines conditional generative adversarial networks (CGANs), a type of deep generative model, with a convolutional neural network (CNN) to postprocess convection-allowing model (CAM) forecasts. The CGANs are designed to create synthetic ensemble members from deterministic CAM forecasts, and their outputs are processed by the CNN to estimate the probability of severe weather. The method is tested using High-Resolution Rapid Refresh (HRRR) 1–24-h forecasts as inputs and Storm Prediction Center (SPC) severe weather reports as targets. The method produced skillful predictions with up to 20% Brier skill score (BSS) increases compared to other neural-network-based reference methods using a testing dataset of HRRR forecasts in 2021. For the evaluation of uncertainty quantification, the method is overconfident but produces meaningful ensemble spreads that can distinguish good and bad forecasts. The quality of CGAN outputs is also evaluated. Results show that the CGAN outputs behave similarly to a numerical ensemble; they preserved the intervariable correlations and the contribution of influential predictors as in the original HRRR forecasts. This work provides a novel approach to postprocess CAM output using neural networks that can be applied to severe weather prediction. Significance StatementWe use a new machine learning (ML) technique to generate probabilistic forecasts of convective weather hazards, such as tornadoes and hailstorms, with the output from high-resolution numerical weather model forecasts. The new ML system generates an ensemble of synthetic forecast fields from a single forecast, which are then used to train ML models for convective hazard prediction. Using this ML-generated ensemble for training leads to improvements of 10%–20% in severe weather forecast skills compared to using other ML algorithms that use only output from the single forecast. This work is unique in that it explores the use of ML methods for producing synthetic forecasts of convective storm events and using these to train ML systems for high-impact convective weather prediction. 
    more » « less
  3. Abstract This study compares real-time forecasts produced by the Warn-on-Forecast System (WoFS) and a hybrid ensemble and variational data assimilation and prediction system (WoF-Hybrid) for 31 events during 2021. Object-based verification is used to quantify and compare strengths and weaknesses of WoFS ensemble forecasts with 3-km horizontal grid spacing and WoF-Hybrid deterministic forecasts with 1.5-km horizontal grid spacing. The goal of such comparison is to provide evidence as to whether WoF-Hybrid has performance characteristics that complement or improve upon those of WoFS. Results indicate that both systems provide similar accuracy for timing and placement of thunderstorm objects identified using simulated reflectivity. WoF-Hybrid provides more accurate forecasts of updraft helicity tracks. Differences in forecast quality are case dependent; the largest difference in accuracy favoring WoF-Hybrid occurs in eight cases identified as “high-impact” by the quantity of National Weather Service Local Storm Reports, while WoFS performance is favored at short lead times for 10 “moderate-” and 13 “low-impact” events. WoF-Hybrid reflectivity objects are closer in size and location to observed objects. However, a higher thunderstorm overprediction bias is identified in WoF-Hybrid, particularly early in the forecast. Two severe weather events are selected for detailed investigation. In the case of 26 May, both systems had similar skill; however, for 10 December, WoF-Hybrid forecasts significantly outperformed WoFS forecasts. These results show improved performance for WoF-Hybrid over WoFS under certain regimes that warrants further investigation. To understand reasons for these differences will help incorporate higher-resolution modeling into Warn-on-Forecast systems. Significance StatementThe NOAA Warn-on-Forecast (WoF) project uses advanced data assimilation for rapidly updating numerical weather prediction systems to provide forecasts of individual thunderstorms. Forecasts show promise for enabling greater warning lead time for some storms. The flagship Warn-on-Forecast System (WoFS) is a 36-member analysis and 18-member forecast system at 3-km grid spacing. The project also produced a single member system that employs variational analysis and produces a deterministic forecast at 1.5-km grid spacing (WoF-Hybrid). This study seeks to evaluate and compare the performance of WoFS and WoF-Hybrid for 31 severe weather events that occurred during 2021. Results found that WoF-Hybrid predicts storm rotation particularly well compared to WoFS, and several other strengths and limitations of both systems are identified. This research may help us understand the complementary nature of two systems and improve our ability to provide more reliable 0–6-h forecasts in the future. 
    more » « less
  4. Abstract Improving the skill of medium-range (3–8 day) severe weather prediction is crucial for mitigating societal impacts. This study introduces a novel approach leveraging decoder-only transformer networks to post-process AI-based weather forecasts, specifically from the Pangu-Weather model, for improved severe weather guidance. Unlike traditional post-processing methods that use a dense neural network to predict the probability of severe weather using discrete forecast samples, our method treats forecast lead times as sequential “tokens”, enabling the transformer to learn complex temporal relationships within the evolving atmospheric state. We compare this approach against post-processing of the Global Forecast System (GFS) using both a traditional dense neural network and our transformer, as well as configurations that exclude convective parameters to fairly evaluate the impact of using the Pangu-Weather AI model. Results demonstrate that the transformer-based post-processing significantly enhances forecast skill compared to dense neural networks. Furthermore, AI-driven forecasts, particularly Pangu-Weather initialized from high resolution analysis, exhibit superior performance to GFS in the medium-range, even without explicit convective parameters. Our approach offers improved accuracy, and reliability, which also provides interpretability through feature attribution analysis, advancing medium-range severe weather prediction capabilities. 
    more » « less
  5. Accurate and timely regional weather prediction is vital for sectors dependent on weather-related decisions. Traditional prediction methods, based on atmospheric equations, often struggle with coarse temporal resolutions and inaccuracies. This article presents a novel machine learning (ML) model, called Micro–Macro (MiMa), that integrates both near-surface obser- vational data from Kentucky Mesonet stations (collected every 5 min, known as Micro data) and hourly atmospheric numerical outputs (termed as Macro data) for fine-resolution weather forecasting. The MiMa model employs an encoder–decoder trans- former structure, with two encoders for processing multivariate data from both datasets and a decoder for forecasting weather variables over short time horizons. Each instance of the MiMa model, called a modelet, predicts the values of a specific weather parameter at an individual mesonet station. The approach is extended with Regional MiMa (Re-MiMa) modelets, which are designed to predict weather variables at ungauged locations by training on multivariate data from a few representative stations in a region, tagged with their elevations. Re-MiMa can provide highly accurate predictions across an entire region, even in areas without observational stations. Experimental results show that MiMa significantly outperforms current models, with Re-MiMa offering precise short-term forecasts for ungauged locations, marking a significant advancement in weather forecasting accu- racy and applicability. 
    more » « less