skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 19, 2026

Title: Organic and inorganic fertilizers modulate the response of the soil microbiome to salinity stress
Salinity stress threatens soil microbiomes, a key driver of soil multifunctionality and health. This study employed high-throughput sequencing of 16S rRNA, PLFAs, multifunctionality index, and co-occurrence networks to gain a comprehensive understanding of the dynamic responses of soil microbiomes to salinity stress gradient (0, 0.4 and 1 mol NaCl). Additionally, we investigated how these responses are shaped by the addition of vermicompost and NPK fertilizer during short-term (2-h) and long-term (70-day) incubation periods. Salinity stress reduced bacterial and fungal phospholipid fatty acids (PLFA) concentrations in the short-term. Over the long-term, the microbial community evolved into a new pattern under salt stress, favoring the presence ofBacteriodota, a salt-tolerant phylum, while decreasing the relative abundance ofAcidobacteriotaandPlanctomycetota, which are more salt-sensitive. Furthermore, salinity decreased species richness by 11.33% and soil multifunctionality by 21.48% but increased microbial network complexity while decreasing its stability. Incorporating vermicompost increased bacterial and fungal PLFAs, enhanced bacterial diversity by 2.33%, promoted salt-tolerant bacteria, and increased the complexity and stability of the bacterial network. Conversely, the application of NPK fertilizer reduced bacterial richness, alpha diversity and soil multifunctionality by 14.52, 5.83, and 12.34%, respectively, further disrupting the microbial community and making resilience to salinity stress more challenging. Furthermore, NPK fertilization increased bacterial network complexity but decreased its stability. This study underscores the significance of employing vermicompost to improve the health of saline soils. Furthermore, it emphasizes the negative impacts of NPK fertilizer on soil microbial structure and function and hinder its recovery from salinity’s impacts.  more » « less
Award ID(s):
2305456
PAR ID:
10618866
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Frontiers in Microbiology
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
16
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Environmental stress is increasing worldwide, yet we lack a clear picture of how stress disrupts the stability of microbial communities and the ecosystem services they provide. Here, we present the first evidence that naturally-occurring microbiomes display network properties characteristic of unstable communities when under persistent stress. By assessing changes in diversity and structure of soil microbiomes along 40 replicate stress gradients (elevation/water availability gradients) in the Florida scrub ecosystem, we show that: (1) prokaryotic and fungal diversity decline in high stress, and (2) two network properties of stable microbial communities—modularity and negative:positive cohesion—have a clear negative relationship with environmental stress, explaining 51–78% of their variation. Interestingly, pathogenic taxa/functional guilds decreased in relative abundance along the stress gradient, while oligotrophs and mutualists increased, suggesting that the shift in negative:positive cohesion could result from decreasing negative:positive biotic interactions consistent with the predictions of the Stress Gradient Hypothesis. Given the crucial role microbiomes play in ecosystem functions, our results suggest that, by limiting the compartmentalization of microbial associations and creating communities dominated by positive associations, increasing stress in the Anthropocene could destabilize microbiomes and undermine their ecosystem services. 
    more » « less
  2. Abstract We conducted a research campaign in a neotropical rainforest in Costa Rica throughout the drought phase of an El‐Nino Southern Oscillation event to determine microbial community dynamics and soil C fluxes. Our study included nests of the leafcutter antAtta cephalotes, as soil disturbances made by these ecosystem engineers may influence microbial drought response. Drought decreased the diversity of microbes and the abundance of core microbiome taxa, including Verrucomicrobial bacteria and Sordariomycete fungi. Despite initial responses of decreasing diversity and altered composition, 6 months post‐drought the microbiomes were similar to pre‐drought conditions, demonstrating the resilience of soil microbial communities to drought events.A. cephalotesnests altered fungal composition in the surrounding soil, and reduced both fungal mortality and growth of Acidobacteria post‐drought. Drought increased CH4consumption in soils due to lower soil moisture, andA. cephalotesnests decrease the variability of CH4emissions in some soil types. CH4emissions were tracked by the abundance of methanotrophic bacteria and fungal composition. These results characterize the microbiome of tropical soils across both time and space during drought and provide evidence for the importance of leafcutter ant nests in shaping soil microbiomes and enhancing microbial resilience during climatic perturbations. 
    more » « less
  3. Abstract Research suggests that microbiomes play a major role in structuring plant communities and influencing ecosystem processes, however, the relative roles and strength of change of microbial components have not been identified. We measured the response of fungal, arbuscular mycorrhizal fungal (AMF), bacteria, and oomycete composition 4 months after planting of field plots that varied in plant composition and diversity. Plots were planted using 18 prairie plant species from three plant families (Poaceae, Fabaceae, and Asteraceae) in monoculture, 2, 3, or 6 species richness mixtures and either species within multiple families or one family. Soil cores were collected and homogenized per plot and DNA were extracted from soil and roots of each plot. We found that all microbial groups responded to the planting design, indicating rapid microbiome response to plant composition. Fungal pathogen communities were strongly affected by plant diversity. We identified OTUs from genera of putatively pathogenic fungi that increased with plant family, indicating likely pathogen specificity. Bacteria were strongly differentiated by plant family in roots but not soil. Fungal pathogen diversity increased with planted species richness, while oomycete diversity, as well as bacterial diversity in roots, decreased. AMF differentiation in roots was detected with individual plant species, but not plant family or richness. Fungal saprotroph composition differentiated between plant family composition in plots, providing evidence for decomposer home-field advantage. The observed patterns are consistent with rapid microbiome differentiation with plant composition, which could generate rapid feedbacks on plant growth in the field, thereby potentially influencing plant community structure, and influence ecosystem processes. These findings highlight the importance of native microbial inoculation in restoration. 
    more » « less
  4. Abstract Consumers play a critical role in mediating plant and ecosystem responses to abiotic stress, yet their influence on belowground processes under changing environmental conditions remains underexplored. Insect consumers are vital components of grassland ecosystems that can shape ecosystem function and stability by mitigating how plant and microbial communities respond to abiotic stress, like drought. This study investigates how small‐bodied consumers influence the magnitude and stability of grassland belowground functions across gradients of abiotic stress. We conducted a fully factorial field experiment manipulating consumer presence and induced drought over a growing season. Our results reveal that the presence of consumers stabilizes bacterial biomass and microbial activity across variable soil moisture conditions. Interestingly, this consumer‐induced increase in ecosystem stability was driven by a destabilization of microbial communities, as indicated by increased variability in bacterial community composition and abundance. Consumer presence also shifted soil bacterial community composition and richness, while fungal communities were less affected. Combined, our results highlight another important dimension of ecosystem stability: community responsiveness and rapid adaptability. Additionally, our findings underscore the critical role of consumers in maintaining belowground ecosystem stability and highlight the need to consider trophic interactions when predicting the impacts of global change on grassland ecosystems. 
    more » « less
  5. null (Ed.)
    Microbial communities help plants access nutrients and tolerate stress. Some microbiomes are specific to plant genotypes and, therefore, may contribute to intraspecific differences in plant growth and be a promising target for plant breeding. Switchgrass (Panicum virgatum) is a potential bioenergy crop with broad variation in yields and environmental responses; recent studies suggest that associations with distinct microbiomes may contribute to variation in cultivar yields. We used a common garden experiment to investigate variation in 12 mature switchgrass cultivar soil microbiomes and, furthermore, to examine how root traits and soil conditions influence microbiome structure. We found that average root diameter varied up to 33% among cultivars and that the cultivars also associated with distinct soil microbiomes. Cultivar had a larger effect on the soil bacterial than fungal community but both were strongly influenced by soil properties. Root traits had a weaker effect on microbiome structure but root length contributed to variation in the fungal community. Unlike the soil communities, the root bacterial communities did not group by cultivar, based on a subset of samples. Microbial biomass carbon and nitrogen and the abundance of several dominant bacterial phyla varied between ecotypes but overall the differences in soil microbiomes were greater among cultivars than between ecotypes. Our findings show that there is not one soil microbiome that applies to all switchgrass cultivars, or even to each ecotype. These subtle but significant differences in root traits, microbial biomass, and the abundance of certain soil bacteria could explain differences in cultivar yields and environmental responses. 
    more » « less