Most buildings still rely on fossil energy --- such as oil, coal and natural gas --- for heating. This is because they are readily available and have higher heat value than their cleaner counterparts. However, these primary sources of energy are also high pollutants. As the grid moves towards eliminating CO 2 emission, replacing these sources of energy with cleaner alternatives is imperative. Electric heat pumps --- an alternative and cleaner heating technology --- have been proposed as a viable replacement. In this paper, we conduct a data-driven optimization study to analyze the potential of reducing carbon emission by replacing gas-based heating with electric heat pumps 1 . We do so while enforcing equity in such transition. We begin by conducting an in-depth analysis into the energy patterns and demographic profiles of buildings. Our analysis reveals a huge disparity between lower and higher income households. We show that the energy usage intensity for lower income homes is 24% higher than higher income homes. Next, we analyze the potential for carbon emission reduction by transitioning gas-based heating systems to electric heat pumps for an entire city. We then propose equity-aware transition strategies for selecting a subset of customers for heat pump-based retrofits which embed various equity metrics and balances the need to maximize carbon reduction with ensuring equitable outcomes for households. We evaluate their effect on CO 2 emission reduction, showing that such equity-aware carbon emission reduction strategies achieve significant emission reduction while also reducing the disparity in the value of selected homes by 5X compared to a carbon-first approach.
more »
« less
This content will become publicly available on July 1, 2026
Combined design and control optimization of heat pumps in residential buildings
Electrification of buildings through deployment of heat pumps requires innovative design and control strategies to reduce their energy demands on the grid. Instead of the sequential approach of optimizing the design specifications and control strategies, this paper considers the benefits of the combined and simultaneous optimization of design capacities and control settings for heat pumps when specified for US residential buildings. A Genetic Algorithm optimizer is used to simultaneously adjust the main and supplementary coil capacities for the heat pump as well as the indoor temperature setpoints to minimize annual heating and cooling energy needs as well as occupant thermal discomfort levels. In comparison to design and control baselines, it is found that simultaneous optimization can achieve 21% and 7% reductions in heating and cooling annual energy consumption for the cases of variable speed and single speed heat pumps. Moreover, the analysis results indicate that these reductions are nearly double the savings obtained when design only and control only based optimizations are considered. The presented combined design and control optimization approach could potentially provide an effective paradigm shift in specifying heat pump systems for residential buildings.
more »
« less
- Award ID(s):
- 2113907
- PAR ID:
- 10620568
- Editor(s):
- Elsevier
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Energy
- Volume:
- 326
- Issue:
- C
- ISSN:
- 0360-5442
- Page Range / eLocation ID:
- 136317
- Subject(s) / Keyword(s):
- Control Design, Genertic Algorithms Heat Pumps Residential Buildings Optimization.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Heating buildings using fossil fuels such as natural gas, propane and oil makes up a significant proportion of the aggregate carbon emissions every year. Because of this, there is a strong interest in decarbonizing residential heating systems using new technologies such as electric heat pumps. In this paper, we conduct a data-driven optimization study to analyze the potential of replacing gas heating with electric heat pumps to reduce CO 2 emission in a city-wide distribution grid. We conduct an in-depth analysis of gas consumption in the city and the resulting carbon emissions. We then present a flexible multi-objective optimization (MOO) framework that optimizes carbon emission reduction while also maximizing other aspects of the energy transition such as carbon-efficiency, and minimizing energy inefficiency in buildings. Our results show that replacing gas with electric heat pumps has the potential to cut carbon emissions by up to 81%. We also show that optimizing for other aspects such as carbon-efficiency and energy inefficiency introduces tradeoffs with carbon emission reduction that must be considered during transition. Finally, we present a detailed analysis of the implication of proposed transition strategies on the household energy consumption and utility bills, electric grid upgrades, and decarbonization policies. We compute the additional energy demand from electric heat pumps at the household as well as the transformer level and discuss how our results can inform decarbonization policies at city scale.more » « less
-
The participation of residents plays a key role in residential energy saving strategies because they make decisions on how to operate building heating and cooling systems. Eco-feedback is an effective tool to motivate energy conserving behaviours (ECBs) by providing information on energy efficiency and associated benefits. The main purpose of this study is to develop an online data-driven building energy model to evaluate heating and cooling-related behaviour changes for eco-feedback design in a multifamily residential building. A grey-box state-space model is presented that is updated with realtime data using a particle filter approach. The model accounts for the evolution of parameters and captures the unobserved inter-unit heat transfer without modelling the whole building thermal network through sequential Bayesian update. The model is developed and validated using data collected in an actual multifamily residential buildingmore » « less
-
Residential heating, primarily powered by natural gas, accounts for a significant portion of residential sector energy use and carbon emissions in many parts of the world. Hence, there is a push towards decarbonizing residential heating by transitioning to energyefficient heat pumps powered by an increasingly greener and less carbon-intensive electric grid. However, such a transition will add additional load to the electric grid triggering infrastructure upgrades, and subsequently erode the customer base using the gas distribution network. Utilities want to guide these transition efforts to ensure a phased decommissioning of the gas network and deferred electric grid infrastructure upgrades while achieving carbon reduction goals. To facilitate such a transition, we present a network-aware optimization framework for decarbonizing residential heating at city scale with an objective to maximize carbon reduction under budgetary constraints. Our approach operates on a graph representation of the gas network topology to compute the cost of transitioning and select neighborhoods for transition. We further extend our approach to explicitly incorporate equity and ensure an equitable distribution of benefits across different socioeconomic groups. We apply our framework to a city in the New England region of the U.S., using real-world gas usage, electric usage, and grid infrastructure data. We show that our networkaware strategy achieves 55% higher carbon reductions than prior network-oblivious work under the same budget. Our equity-aware strategy achieves an equitable outcome while preserving the carbon reduction benefits of the network-aware strategy.more » « less
-
In this work, we present hardware and firmware design and preliminary testing results for a noninvasive device for measuring fuel oil consumption in fuel oil vented heaters. Fuel oil vented heaters are a popular space heating method in northern climates. Monitoring fuel consumption is useful to understanding residential daily and seasonal heating patterns and understanding the thermal characteristics of buildings. The device is a pump monitoring apparatus (PuMA) that employs a magnetoresistive sensor to monitor the activity of solenoid driven positive displacement pumps, which are commonly used in fuel oil vented heaters. PuMA accuracy for calculating fuel oil consumption was evaluated in a lab setting and found to vary up to 7% from the measured consumption value during testing. This variance will be explored more in field testing.more » « less
An official website of the United States government
