skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analyzing the Impact of Decarbonizing Residential Heating on the Electric Distribution Grid
Heating buildings using fossil fuels such as natural gas, propane and oil makes up a significant proportion of the aggregate carbon emissions every year. Because of this, there is a strong interest in decarbonizing residential heating systems using new technologies such as electric heat pumps. In this paper, we conduct a data-driven optimization study to analyze the potential of replacing gas heating with electric heat pumps to reduce CO 2 emission in a city-wide distribution grid. We conduct an in-depth analysis of gas consumption in the city and the resulting carbon emissions. We then present a flexible multi-objective optimization (MOO) framework that optimizes carbon emission reduction while also maximizing other aspects of the energy transition such as carbon-efficiency, and minimizing energy inefficiency in buildings. Our results show that replacing gas with electric heat pumps has the potential to cut carbon emissions by up to 81%. We also show that optimizing for other aspects such as carbon-efficiency and energy inefficiency introduces tradeoffs with carbon emission reduction that must be considered during transition. Finally, we present a detailed analysis of the implication of proposed transition strategies on the household energy consumption and utility bills, electric grid upgrades, and decarbonization policies. We compute the additional energy demand from electric heat pumps at the household as well as the transformer level and discuss how our results can inform decarbonization policies at city scale.  more » « less
Award ID(s):
2020888 2021693
PAR ID:
10441182
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM SIGEnergy Energy Informatics Review
Volume:
3
Issue:
2
ISSN:
2770-5331
Page Range / eLocation ID:
47 to 60
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Most buildings still rely on fossil energy --- such as oil, coal and natural gas --- for heating. This is because they are readily available and have higher heat value than their cleaner counterparts. However, these primary sources of energy are also high pollutants. As the grid moves towards eliminating CO 2 emission, replacing these sources of energy with cleaner alternatives is imperative. Electric heat pumps --- an alternative and cleaner heating technology --- have been proposed as a viable replacement. In this paper, we conduct a data-driven optimization study to analyze the potential of reducing carbon emission by replacing gas-based heating with electric heat pumps 1 . We do so while enforcing equity in such transition. We begin by conducting an in-depth analysis into the energy patterns and demographic profiles of buildings. Our analysis reveals a huge disparity between lower and higher income households. We show that the energy usage intensity for lower income homes is 24% higher than higher income homes. Next, we analyze the potential for carbon emission reduction by transitioning gas-based heating systems to electric heat pumps for an entire city. We then propose equity-aware transition strategies for selecting a subset of customers for heat pump-based retrofits which embed various equity metrics and balances the need to maximize carbon reduction with ensuring equitable outcomes for households. We evaluate their effect on CO 2 emission reduction, showing that such equity-aware carbon emission reduction strategies achieve significant emission reduction while also reducing the disparity in the value of selected homes by 5X compared to a carbon-first approach. 
    more » « less
  2. Residential heating, primarily powered by natural gas, accounts for a significant portion of residential sector energy use and carbon emissions in many parts of the world. Hence, there is a push towards decarbonizing residential heating by transitioning to energyefficient heat pumps powered by an increasingly greener and less carbon-intensive electric grid. However, such a transition will add additional load to the electric grid triggering infrastructure upgrades, and subsequently erode the customer base using the gas distribution network. Utilities want to guide these transition efforts to ensure a phased decommissioning of the gas network and deferred electric grid infrastructure upgrades while achieving carbon reduction goals. To facilitate such a transition, we present a network-aware optimization framework for decarbonizing residential heating at city scale with an objective to maximize carbon reduction under budgetary constraints. Our approach operates on a graph representation of the gas network topology to compute the cost of transitioning and select neighborhoods for transition. We further extend our approach to explicitly incorporate equity and ensure an equitable distribution of benefits across different socioeconomic groups. We apply our framework to a city in the New England region of the U.S., using real-world gas usage, electric usage, and grid infrastructure data. We show that our networkaware strategy achieves 55% higher carbon reductions than prior network-oblivious work under the same budget. Our equity-aware strategy achieves an equitable outcome while preserving the carbon reduction benefits of the network-aware strategy. 
    more » « less
  3. Elsevier (Ed.)
    Electrification of buildings through deployment of heat pumps requires innovative design and control strategies to reduce their energy demands on the grid. Instead of the sequential approach of optimizing the design specifications and control strategies, this paper considers the benefits of the combined and simultaneous optimization of design capacities and control settings for heat pumps when specified for US residential buildings. A Genetic Algorithm optimizer is used to simultaneously adjust the main and supplementary coil capacities for the heat pump as well as the indoor temperature setpoints to minimize annual heating and cooling energy needs as well as occupant thermal discomfort levels. In comparison to design and control baselines, it is found that simultaneous optimization can achieve 21% and 7% reductions in heating and cooling annual energy consumption for the cases of variable speed and single speed heat pumps. Moreover, the analysis results indicate that these reductions are nearly double the savings obtained when design only and control only based optimizations are considered. The presented combined design and control optimization approach could potentially provide an effective paradigm shift in specifying heat pump systems for residential buildings. 
    more » « less
  4. The impact of human activity on the climate is a major global challenge that affects human well-being. Buildings are a major source of energy consumption and carbon emissions worldwide, especially in advanced economies such as the United States. As a result, making grids and buildings sustainable by reducing their carbon emissions is emerging as an important step toward societal decarbonization and improving overall human well-being. While prior work on demand response methods in power grids and buildings has targeted peak shaving and price arbitrage in response to price signals, it has not explicitly targeted carbon emission reductions. In this paper, we analyze the flexibility of building loads to quantify the upper limit on their potential to reduce carbon emissions, assuming perfect knowledge of future demand and carbon intensity. Our analysis leverages real-world demand patterns from 1000+ buildings and carbon-intensity traces from multiple regions. It shows that by manipulating the demand patterns of electric vehicles, heating, ventilation, and cooling (HVAC) systems, and battery storage, we can reduce carbon emissions by 26.93% on average and by 54.90% at maximum. Our work advances the understanding of sustainable infrastructure by highlighting the potential for infrastructure design and interventions to significantly reduce carbon footprints, benefiting human well-being. 
    more » « less
  5. Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions --- equivalent to a drop of 23.3% in our electric grid emissions. 
    more » « less