skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Synthesis and Spectroscopic Characterization of Bis(thiadiazolo)benzoporphyrinoids: Insights into the Properties of Porphyrin-Type Systems with Strongly Electron-Withdrawing β,β’-Fused Rings
A series of porphyrinoids fused to highly electron-withdrawing bis(thiadiazolo)benzene units have been prepared and spectroscopically characterized. These structures have modified chromophores and exhibit large bathochromic shifts. The nickel(II), copper(II) and zinc complexes of a bis(thiadiazolo)benzoporphyrin were prepared, and these showed strong absorptions above 600 nm that shifted to longer wavelengths with increasing atomic number for the coordinated metal cations. Although the investigated porphyrinoids were poorly soluble, proton NMR data could be obtained, and these demonstrated that the structures possess global aromatic character. This was confirmed with nucleus-independent chemical shift (NICS) calculations and anisotropy of induced current density (AICD) plots. The AICD plots also demonstrate that the fused heterocyclic unit is disconnected from the porphyrinoid π-system, and in this respect, it differs from phenanthroline-fused porphyrinoids as it shows the presence of extended conjugation pathways.  more » « less
Award ID(s):
2247214
PAR ID:
10620588
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Molecules
Volume:
30
Issue:
8
ISSN:
1420-3049
Page Range / eLocation ID:
1822
Subject(s) / Keyword(s):
Bis(thiadiazolo)benzene porphyrinoids aromaticity NMR spectroscopy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The photophysical properties of naturally occurring chlorophylls depend on the regioisomeric nature of the β-pyrrolic substituents. Such systems are the “gold standard” by which such effects are judged. However, simple extrapolations from what has been learned with chlorophylls may not be appropriate for other partially reduced porphyrinoids. Here we report the synthesis of a series of cis / trans -porphodilactones ( cis / trans -1) and related derivatives ( cis / trans 2–5) designed to probe the effect of regioisomeric substitution in porphyrinoids that incorporate degrees of unsaturation through the β-pyrrolic periphery that exceed those of chlorophyll. These test systems were obtained through β-pyrrolic modifications of the tetrapyrrolic core, which included reduction of β-diazalone to the corresponding dilactol moieties and 1,3-dipolar cycloadditions. In the case of cis - vs. trans -3 bearing two pyrrolidine-fused β-rings we found an unprecedented Δ Q L up to ca. 71 nm (2086 cm −1 ), where Δ Q L ( Q L means the lowest energy transfer band, also the S 0 → S 1 transition band, which is often assigned as Q y (0,0) band) refers to the transition energy difference between the corresponding cis / trans -isomers. The Δ Q L values for these and other systems reported here were found to depend on the differences in the HOMO–LUMO energy gap and to be tied to the degeneracy and energy level splitting of the FMOs, as inferred from a combination of MCD spectral studies and DFT calculations. The aromaticity, estimated from the chemical shifts of the N–H protons and supported by theoretical calculations ( e.g. , AICD plots and NICS(1) values), was found to correlate with the extent of porphyrin periphery saturation resulting from the specific β-modifications. The aromaticity proved inversely proportional to the degree to which the regioisomerism affected the photophysical properties as noted from plots of Δ Q L s in cm −1 vs. the average NICS(1) values for 1–5. Such a finding is not something that can be easily interpolated from prior work and thus reveals how aromaticity may be used to fine-tune photophysical effects in reduced porphyrinoids. 
    more » « less
  2. null (Ed.)
    Neo-confused porphyrins (neo-CPs), porphyrin isomers with a 1,3-connected pyrrolic subunit, are aromatic structures with a CNNN coordination core. Previously, examples of neo-CPs with fused benzo units or electron-withdrawing ester substituents have been described. In this paper, two new examples of neo-CPs are reported that lack a fused aromatic unit or an ester moiety, but instead have a bromo or phenyl substituent on the neo-confused ring. Acid-catalyzed condensation of suitably substituted 1,2′-dipyrrylmethane dialdehydes with a 2,2′-dipyrrylmethane, followed by oxidation with aqueous ferric chloride solutions, afforded the neo-CPs in 40–45% yield. These porphyrin analogues had slightly reduced diatropic ring currents and slowly decomposed in solution. The related palladium( ii ) and nickel( ii ) complexes proved to be very unstable, even though the diatropicity of the macrocycle was enhanced. This study shows that stabilizing substituents are necessary for investigations into this class of porphyrinoids. Attempts to prepare imidazole versions of neo-CPs were unsuccessful. 
    more » « less
  3. A series of 5-alkoxy-1,3-benzenedicarbaldehydes and related dimers were prepared in three steps from dimethyl 5-hydroxyisophthalate. Acid catalyzed condensation of the dialdehydes with a tripyrrane dicarboxylic acid, followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, afforded good yields of 3-alkoxybenziporphyrins, although dimeric tetraaldehydes failed to give isolatable porphyrinoid products. Proton NMR spectroscopy gave no indication of an aromatic ring current, but addition of trifluoroacetic acid resulted in the formation of dications that exhibited weakly diatropic characteristics. Spectroscopic titration with TFA demonstrated that stepwise protonation took place, generating monocationic and dicationic species. 3-Alkoxybenziporphyrins reacted with nickel(II) or palladium(II) acetate to give the related nickel(II) or palladium(II) complexes. These stable organometallic derivatives showed increased diatropic properties that were most pronounced for the palladium(II) complexes. These unique porphyrinoids provide further insights into the properties of benziporphyrins. 
    more » « less
  4. LeBot, Nathalie; Larochelle, Stephane; Bergin, Enda; Saini, Prabhjot (Ed.)
    Abstract Carbaporphyrin dimers, investigated for their distinctive electronic structures and exceptional properties, have predominantly consisted of systems containing identical subunits. This study addresses the associated knowledge gap by focusing on asymmetric carbaporphyrin dimers with Janus-like characteristics. The synthesis of a Janus-type carbaporphyrin pseudo-dimer5is presented. It displays antiaromatic characteristics on the fused side and nonaromatic behavior on the unfused side. A newly synthesized tetraphenylene (TPE) linked bis-dibenzihomoporphyrin8and a previously reported dibenzo[g,p]chrysene (DBC) linked bis-dicarbacorrole9were prepared as controls. Comprehensive analyses, including1H NMR spectral studies, single crystal X-ray diffraction analyses, and DFT calculations, validate the mixed character of5. A further feature of the Janus pseudo-dimer5is that it may be transformed into a heterometallic complex, with one side coordinating a Cu(III) center and the other stabilizing a BODIPY complex. This disparate regiochemical reactivity underscores the potential of carbaporphyrin dimers as versatile frameworks, with electronic features and site-specific coordination chemistry controlled through asymmetry. These findings position carbaporphyrin dimers as promising candidates for advances in electronic structure studies, coordination chemistry, materials science, and beyond. 
    more » « less
  5. The crystal structures of three β-halolactic acids have been determined, namely, β-chlorolactic acid (systematic name: 3-chloro-2-hydroxypropanoic acid, C 3 H 5 ClO 3 ) (I), β-bromolactic acid (systematic name: 3-bromo-2-hydroxypropanoic acid, C 3 H 5 BrO 3 ) (II), and β-iodolactic acid (systematic name: 2-hydroxy-3-iodopropanoic acid, C 3 H 5 IO 3 ) (III). The number of molecules in the asymmetric unit of each crystal structure ( Z ′) was found to be two for I and II, and one for III, making I and II isostructural and III unique. The difference between the molecules in the asymmetric units of I and II is due to the direction of the hydrogen bond of the alcohol group to a neighboring molecule. Molecular packing shows that each structure has alternating layers of intermolecular hydrogen bonding and halogen–halogen interactions. Hirshfeld surfaces and two-dimensional fingerprint plots were analyzed to further explore the intermolecular interactions of these structures. In I and II, energy minimization is achieved by lowering of the symmetry to adopt two independent molecular conformations in the asymmetric unit. 
    more » « less