skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tractography Study of the Human Brain: Sex Specific Templates and Sex Variations
The human brain is sexually dimorphic and these sex differences have shown to affect brain response to trauma. We investigated the sex differences in the tract structures by studying diffusion weighted (DW) images of 594 females and 506 males from the Human-Connectome-Project dataset. All the female and male DW images were reconstructed in the ICBM152 space using Q-Space diffeomorphic reconstruction technique and their mapped orientation distribution function images were averaged to generate the female- and male-DW-templates. The tract streamlines were generated through tractography for female and male templates and normalized to the total brain volume . The distributions of normalized tract lengths were significantly different between female- and male-templates and the female-template showed to have more longer normalized tracts compared to the male template. For the regional analysis, the templates were parcellated into sixteen regions of interests (ROI) including brain-stem, five subregions of corpus-callosum, and right and left hippocampus, thalamus, cerebellum white-matter (WM), cerebral WM, and cerebellum cortex using a FreeSurfer-based segmentation atlas. For all the ROIs, the average fractional anisotropy (0.5-5.7%) and normalized tract lengths (1.1-2.7%) were larger in female template while the average mean diffusion was larger (1.3-5.6%) in male-template. Quantifying brain connectivity by counting number of tracts passing through pairs of ROIs, showed more pairs with a higher connectivity in female-template, and one of the highest percentages of sex differences in right/left cerebellum WM/cortex connections. Our results reinforce the need to continue investigating the sex variations in axonal structure and their effects to brain trauma.  more » « less
Award ID(s):
2138719
PAR ID:
10620659
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Mary Ann Liebert, Inc.
Date Published:
Journal Name:
Journal of Neurotrauma
Volume:
40
Issue:
15-16
ISSN:
0897-7151
Page Range / eLocation ID:
A-66
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sex differences in brain structure significantly influence traumatic brain injury (TBI) onset and progression, yet this area is understudied. Herein, we developed sex-specific brain anatomical (macroscale) and axonal tract (mesoscale) templates and explored the sex variations at subject level using a set of T1-MRI (609 males, 721 females) and DTI images (506 males, 594 females). The FreeSurfer, ANTs, and DSI-Studio packages were used. We investigated overall/regional volumes, DTI metrics (including fractional anisotropy (FA), mean diffusivity, and radial diffusivity), and connectivity matrix across 23 brain regions. The brain connectome was derived by multiplying the fiber tract counts and the FA values within the connecting tracts, quantifying the connection strength within each pair of regions. Our subject-wise analysis revealed significant sex based differences (Mann-Whitney p-values < 0.05) across most studied regions for all parameters. The largest sex differences in brain connections were observed in five regions: corpus callosum and right/left cortex and cerebral white matter, all stronger in females. Brain regions were typically larger in males, yet females had higher fractional volumes in the majority of regions except for CSF and ventricles, known for their cushioning effect during head impacts. Additionally, the sex-specific templates better represented their targeted sex compared to opposite or mixed-sex populations as evaluated by root-mean-square-errors when comparing the DTI metrics and connectivity from the DTI templates against the median of subjects and deformation field in registering the subjects to the T1-MRI templates. Our findings highlight the necessity of sex-specific templates in accurate brain modeling and TBI research. 
    more » « less
  2. he sex-based human brain structural variations alongside the necessity and development process for sex-specific brain templates were investigated in this study. Comparing magnetic resonance images of 500 female and 500 male subjects, no significant sex-based difference was observed for average cortical thickness, however, all the volumetric values, including the total brain volume (TBV) and major 19 brain regions, were found to be significantly different between females and males. Moreover, analyzing the fractional volume of the regions showed that these sex variations were not proportional to TBV for all regions. These findings underscore the importance of distinguishing the sex-based differences in human brain studies. While brain templates have been developed for general population and cohorts with the same characteristics such as race or age, there is a lack of sex-specific brain templates. To fill this gap and find a representative reference brain image for each sex, nonlinear templates were developed for female, male, and mixed population subjects. Next, a separate set of 109 female and 109 male brain images were used to evaluate the sex-specificity of the brain templates. It was observed that the female and male test subjects were registered to their sex-specific templates with the lowest amount of deformation/warping confirming better representativeness of the sex-specific templates for their target population. The findings of this study including the templates and the reported variations can be used in research involving sex dimorphic brain disorders, diseases, and/or injuries such as traumatic brain injury that is affected by the sex-based brain anatomical differences. Statement of significance: Human brain exhibits sex-based variation both in size and volumetric composition of different regions. Despite these differences, there is a paucity of sex-specific brain templates. Addressing this gap marks the significance of our study as briefly explained here. We have shown that differences in male and female brain go beyond simple scaling and the observation of regional differences that are not proportional to the sex-based total brain volume variations has motivated us to develop sex-specific templates. The representativeness and difference of these sex-specific templates were assessed by measuring the amount of required warping in nonlinear registration of test subjects to them. It was shown that registration of female and male subjects to their corresponding sex-specific template involved lower level of warping compared to their registration to their opposite sex or mixed population brain template. 
    more » « less
  3. The human sense of smell plays an important role in appetite and food intake, detecting environmental threats, social interactions, and memory processing. However, little is known about the neural circuity supporting its function. The olfactory tracts project from the olfactory bulb along the base of the frontal cortex, branching into several striae to meet diverse cortical regions. Historically, using diffusion magnetic resonance imaging (dMRI) to reconstruct the human olfactory tracts has been prevented by susceptibility and motion artifacts. Here, we used a dMRI method with readout segmentation of long variable echo-trains (RESOLVE) to minimize image distortions and characterize the human olfactory tracts in vivo . We collected high-resolution dMRI data from 25 healthy human participants (12 male and 13 female) and performed probabilistic tractography using constrained spherical deconvolution (CSD). At the individual subject level, we identified the lateral, medial, and intermediate striae with their respective cortical connections to the piriform cortex and amygdala (AMY), olfactory tubercle (OT), and anterior olfactory nucleus (AON). We combined individual results across subjects to create a normalized, probabilistic atlas of the olfactory tracts. We then investigated the relationship between olfactory perceptual scores and measures of white matter integrity, including mean diffusivity (MD). Importantly, we found that olfactory tract MD negatively correlated with odor discrimination performance. In summary, our results provide a detailed characterization of the connectivity of the human olfactory tracts and demonstrate an association between their structural integrity and olfactory perceptual function. SIGNIFICANCE STATEMENT This study provides the first detailed in vivo description of the cortical connectivity of the three olfactory tract striae in the human brain, using diffusion magnetic resonance imaging (dMRI). Additionally, we show that tract microstructure correlates with performance on an odor discrimination task, suggesting a link between the structural integrity of the olfactory tracts and odor perception. Lastly, we generated a normalized probabilistic atlas of the olfactory tracts that may be used in future research to study its integrity in health and disease. 
    more » « less
  4. null (Ed.)
    In order to better understand how our visual system processes information, we must understand the underlying brain connectivity architecture, and how it can get reorganized under visual deprivation. The full extent to which visual development and visual loss affect connectivity is not well known. To investigate the effect of the onset of blindness on structural connectivity both at the whole-brain voxel-wise level and at the level of all major whitematter tracts, we applied two complementary Diffusion-Tension Imaging (DTI) methods, TBSS and AFQ. Diffusion-weighted brain images were collected from three groups of participants: congenitally blind (CB), acquired blind (AB), and fully sighted controls. The differences between these groups were evaluated on a voxel-wise scale with Tract-Based Spatial Statistics (TBSS) method, and on larger-scale with Automated Fiber Quantification (AFQ), a method that allows for between-group comparisons at the level of the major fiber tracts. TBSS revealed that both blind groups tended to have higher FA than sighted controls in the central structures of the brain. AFQ revealed that, where the three groups differed, congenitally blind participants tended to be more similar to sighted controls than to those participants who had acquired blindness later in life. These differences were specifically manifested in the left uncinated fasciculus, the right corticospinal fasciculus, and the left superior longitudinal fasciculus, areas broadly associated with a range of higher-level cognitive systems. 
    more » « less
  5. Abstract In this paper, we present results from an experiment using EEG to measure brain activity and explore EEG frequency power associated with gender differences of professional industrial designers while performing two prototypical stages of constrained and open design tasks, problem-solving and design sketching. Results indicate no main effect of gender. However, among other main effects, a consistent main effect of hemisphere for the six frequency bands under analysis was found. In the problem-solving stage, male designers show higher alpha and beta bands in channels of the prefrontal cortices and female designers in the right occipitotemporal cortex and secondary visual cortices. In the design sketching stage, male designers show higher alpha and beta bands in the right prefrontal cortex, and female designers in the right temporal cortex and left prefrontal cortex, where higher theta is also found. Prioritising different cognitive functions seem to play a role in each gender's approach to constrained and open design tasks. Results can be useful to design professionals, students and design educators, and for the development of methodological approaches in design research and education. 
    more » « less