Wildfire severity is increasing in the western United States. Simultaneously, many recognize that fire is a natural process and advocate for learning to live with fire. Indeed, the naturalness of fire can be an important reason provided to increase the amount of fire on a landscape. However, “naturalness” can be interpreted in incommensurate ways, such as the historic range of variability of a system or the absence of human influence. What makes wildfires feel natural or unnatural to the people who experience them, and how naturalness affects reactions to wildfires is underexplored. Using social representations theory, we examine the 2023 Lookout Fire at the H. J. Andrews Experimental Forest (HJA). We use semi-structured interviews (n = 40) to explore how the research community associated with the HJA mentally constructs and uses naturalness to emotionally process and make meaning from the wildfire. We find even in a community with advanced training in ecology, respondents use a variety of metrics to determine naturalness, including ignition source, fire behavior, and pre-fire landscape characteristics and fire history. Respondents consider a variety of factors, and there was not consensus on whether the Lookout Fire was a “natural” fire. In general, respondents who described the fire as more natural were able to come to a state of acceptance and excitement for future research opportunities sooner than respondents who described the fire as largely unnatural. This has important implications for wildfire risk communication for scientists and practitioners who want to restore fire as a natural process. While fires perceived (or framed) as natural may be more readily accepted, fires perceived as unnatural may take longer to process. Fires perceived as human-caused and especially as climate-exacerbated may be the most difficult for people to process after and during the fire, and may have the most resistance for being managed for purposes other than full suppression.
more »
« less
This content will become publicly available on June 1, 2026
The Role of Suppression Performance Information in Judging When to Use a Fire Extinguisher
The ability of a fire extinguisher to suppress fires varies by the rated performance of the unit. Safety guidance in the United States indicates that the occupant should consider the performance rating of the extinguisher when deciding to use it with a fire. The present study investigated whether individuals are aware of the connection between the suppression performance of fire extinguishers and the intensity of fires the unit can extinguish. Across five experiments, participants were presented with fire extinguishers that varied in suppression performance (smaller, medium, and larger) and judged whether the extinguisher could extinguish a developing room fire that increased in intensity. The fire intensity at which they stopped attempting to use the extinguisher (threshold) was calculated. No significant differences in threshold were observed by suppression performance condition when suppression information about the single extinguisher at hand was presented. This included when information was provided about the amount of agent, the distance and duration of discharge, and with the water equivalent the extinguisher was rated. However, when trained on the differences in suppression performance between extinguishers and provided with corresponding containers of water, thresholds did vary by performance rating. We discuss how providing information about variations in suppression performance may be necessary to highlight differences in extinguisher ratings.
more »
« less
- Award ID(s):
- 2200416
- PAR ID:
- 10620688
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Safety
- Volume:
- 11
- Issue:
- 2
- ISSN:
- 2313-576X
- Page Range / eLocation ID:
- 58
- Subject(s) / Keyword(s):
- decision making human behavior in fire perception-action information processing mental representation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Neotropical xerophytic forest ecosystems evolved with fires that shaped their resilience to disturbance events. However, it is unknown whether forest resilience to fires persists under a new fire regime influenced by anthropogenic disturbance and climate change. We asked whether there was evidence for a fire severity threshold causing an abrupt transition from a forest to an alternative shrub thicket state in the presence of typical postfire management. We studied a heterogeneous wildfire event to assess medium‐term effects (11 years) of varying fire severity in a xerophytic Caldén forest in central Argentina. We conducted vegetation surveys in patches that were exposed to low (LFS), medium (MFS), and high (HFS) fire severities but had similar prefire woody canopy cover. Satellite images were used to quantify fire severity using a delta Normalized Burning Ratio (dNBR) and to map prefire canopy cover. Postfire total woody canopy cover was higher in low and medium than high severity patches, but the understory woody component was highest in HFS patches. The density of woody plants was over three times higher under HFS than MFS and LFS due to the contribution of small woody plants to the total density. Unlike LFS and MFS patches, the small plants in HFS patches were persistent, multistem shrubs that resulted from the resprouting of top‐killedProsopis caldeniatrees and, more importantly, from young shrubs that probably established after the wildfire. Our results suggest that the Caldén forest is resilient to fires of low to moderate severities but not to high‐severity fires. Fire severities with dNBR values > ~600 triggered an abrupt transition to a shrub thicket state. Postfire grazing and controlled‐fire treatments likely contributed to shrub dominance after high‐severity wildfire. Forest to shrub thicket transitions enable recurring high‐severity fire events. We propose that repeated fires combined with grazing can trap the system in a shrub thicket state. Further studies are needed to determine whether the relationships between fire and vegetation structure examined in this case study represent general mechanisms of irreversible state changes across the Caldenal forest region and whether analogous threshold relationships exist in other fire‐prone woodland ecosystems.more » « less
-
Tropical peatlands are highly vulnerable to anthropogenic alterations. In Costa Rica, riverine peatlands are understudied, and most are not included in protected areas. This study aims to generating information useful to assess the anthropogenic pressure in a riverine peatland in Los Robles Sector (LRS) of Medio Queso Wetland (MQW) complex. Evaluations of impacts of fires on vegetation and surface peat chemistry, and the post-2021 fire, makeup of dominant vegetation changes with the Cyperaceae species Scleria melaleuca replacing Eleocharis interstincta as the dominant species are presented. The topsoil (0–20 cm) total C content was quantified as lower than 300 g kg−1 with no significant statistical differences in total C and N content between soil shortly after the fires or two years later. The species E. interstincta is observed to promote higher C stability during the dry season, and has a more recalcitrant composition of the root system compared to the post 2021-fire dominant S. melaleuca. To reduce the impact on C accumulation, measures to prevent grazing-originated fires, especially when the water table is low, are urgent. Hence, this work aims at proving information that can be a baseline for impacts assessment and to inform conservation measures and policies.more » « less
-
To understand community impacts and needs after the August 2023 Maui wildfires, we conducted a rapid survey-based field investigation two weeks after the incident. During the fires, municipal water customers were warned not to use their water due to potential drinking water contamination. Household displacement and isolation of some impacted areas limited extensive study participation. Households (14) in the affected areas were visited and surveyed about property characteristics, evacuation, water use, and water quality observations. Publicly available test results from Maui County and the University of Hawai'i were also reviewed. Opportunistically, wildfire impacts to agricultural water systems were documented. Half of the households had property damage, and all lost power and used drinking water before being notified that it was potentially contaminated. Nearly all households expressed confusion about allowable water use activities and health risks. Most households noticed water issues after the evacuation order was lifted, and some acquired and used at-home drinking water test kits. None of these kits could find all previously identified fire-related chemicals. Damage to agricultural water systems was similar to damage seen for residential systems. Recommendations to lessen impacts and expedite community response and recovery from wildfires are provided.more » « less
-
Abstract BackgroundPrescribed fire is an essential tool employed by natural resource managers to serve ecological and fuel treatment objectives of fire management. However, limited operational resources, environmental conditions, and competing goals result in a finite number of burn days, which need to be allocated toward maximizing the overall benefits attainable with fire management. Burn prioritization models must balance multiple management objectives at landscape scales, often providing coarse resolution information. We developed a decision-support framework and a burn prioritization model for wetlands and wildland-urban interfaces using high-resolution mapping in Everglades National Park (Florida, USA). The model included criteria relevant to the conservation of plant communities, the protection of endangered faunal species, the ability to safely contain fires and minimize emissions harmful to the public, the protection of cultural, archeological, and recreational resources, and the control of invasive plant species. A geographic information system was used to integrate the multiple factors affecting fire management into a single spatially and temporally explicit management model, which provided a quantitative computations-alternative to decision making that is usually based on qualitative assessments. ResultsOur model outputs were 50-m resolution grid maps showing burn prioritization scores for each pixel. During the 50 years of simulated burn unit prioritization used for model evaluation, the mean burned surface corresponded to 256 ± 160 km2 y−1, which is 12% of the total area within Everglades National Park eligible for prescribed fires. Mean predicted fire return intervals (FRIs) varied among ecosystem types: marshes (9.9 ± 1.7 years), prairies (7.3 ± 1.9 years), and pine rocklands (4.0 ± 0.7 years). Mean predicted FRIs also varied among the critical habitats for species of special concern:Ammodramus maritimus mirabilis(7.4 ± 1.5 years),Anaea troglodyta floridalisandStrymon acis bartramibutterflies (3.9 ± 0.2 years), andEumops floridanus(6.5 ± 2.9 years). While mean predicted fire return intervals accurately fit conservation objectives, baseline fire return intervals, calculated using the last 20 years of data, did not. Fire intensity and patchiness potential indices were estimated to further support fire management. ConclusionsBy performing finer-scale spatial computations, our burn prioritization model can support diverse fire regimes across large wetland landscape such as Everglades National Park. Our model integrates spatial variability in ecosystem types and habitats of endangered species, while satisfying the need to contain fires and protect cultural heritage and infrastructure. Burn prioritization models can allow the achievement of target fire return intervals for higher-priority conservation objectives, while also considering finer-scale fire characteristics, such as patchiness, seasonality, intensity, and severity. Decision-support frameworks and higher-resolution models are needed for managing landscape-scale complexity of fires given rapid environmental changes.more » « less
An official website of the United States government
