Escalating wildfire activity in the western United States has accelerated adverse societal impacts. Observed increases in wildfire severity and impacts to communities have diverse anthropogenic causes—including the legacy of fire suppression policies, increased development in high-risk zones, and aridification by a warming climate. However, the intentional use of fire as a vegetation management tool, known as “prescribed fire,” can reduce the risk of destructive fires and restore ecosystem resilience. Prescribed fire implementation is subject to multiple constraints, including the number of days characterized by weather and vegetation conditions conducive to achieving desired outcomes. Here, we quantify observed and projected trends in the frequency and seasonality of western United States prescribed fire days. We find that while ~2 C of global warming by 2060 will reduce such days overall (−17%), particularly during spring (−25%) and summer (−31%), winter (+4%) may increasingly emerge as a comparatively favorable window for prescribed fire especially in northern states.
more »
« less
Vegetation and Peat Soil Characteristics of a Fire-Impacted Tropical Peatland in Costa Rica
Tropical peatlands are highly vulnerable to anthropogenic alterations. In Costa Rica, riverine peatlands are understudied, and most are not included in protected areas. This study aims to generating information useful to assess the anthropogenic pressure in a riverine peatland in Los Robles Sector (LRS) of Medio Queso Wetland (MQW) complex. Evaluations of impacts of fires on vegetation and surface peat chemistry, and the post-2021 fire, makeup of dominant vegetation changes with the Cyperaceae species Scleria melaleuca replacing Eleocharis interstincta as the dominant species are presented. The topsoil (0–20 cm) total C content was quantified as lower than 300 g kg−1 with no significant statistical differences in total C and N content between soil shortly after the fires or two years later. The species E. interstincta is observed to promote higher C stability during the dry season, and has a more recalcitrant composition of the root system compared to the post 2021-fire dominant S. melaleuca. To reduce the impact on C accumulation, measures to prevent grazing-originated fires, especially when the water table is low, are urgent. Hence, this work aims at proving information that can be a baseline for impacts assessment and to inform conservation measures and policies.
more »
« less
- Award ID(s):
- 1749252
- PAR ID:
- 10635128
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Wetlands
- Volume:
- 44
- Issue:
- 4
- ISSN:
- 0277-5212
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Woody plant encroachment of grassland ecosystems is a geographically extensive phenomenon that can lead to rapid land degradation and significantly alter global biogeochemical cycles, and this ecosystem change has been particularly well documented in the desert grassland of the southwestern United States. Fires are known to decrease vegetation cover and increase soil erodibility, and the shifts in wildfire regimes are currently occurring in Chihuahuan Desert. It is generally recognized that the invasion of woody vegetation into grasslands and savannas will increase the carbon stored in arid ecosystems. However, carbon storage may be complicated by disturbance such as wildfire, which alters the distribution and amount of C pools in the drylands. The relative distribution of each vegetation type to the soil C pool and its variability after fires are not well-understood in this ecosystem. This research will investigate the variations of SOC and its vegetation source partition at microsite scale in the woody shrub encroached grassland after the occurrence of fire, which will provide further information on wildfire’s influence on soil C pool dynamics in arid and semiarid lands. The post-fire changes of the spatial pattern of SOC and vegetation contributions in the shrub encroached grassland will be analyzed using a geostatistical method outlined in Guan et al. (2018). Overall, understanding the post-fire redistribution and sources of SOC may provide insights on the important role played by fire, aeolian processes and vegetation in the dynamics of desert grassland ecosystems.more » « less
-
null (Ed.)Abstract Wildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986–2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region was a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C year −1 , was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C year −1 ) in the region. Our simulated direct emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increased, combustion emission tended to switch from vegetation origin towards soil origin. When dNBR is below 300, fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the post-fire soil respiration decreases for moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior-, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future.more » « less
-
Abstract Increasing fire impacts across North America are associated with climate and vegetation change, greater exposure through development expansion, and less-well studied but salient social vulnerabilities. We are at a critical moment in the contemporary human-fire relationship, with an urgent need to transition from emergency response to proactive measures that build sustainable communities, protect human health, and restore the use of fire necessary for maintaining ecosystem processes. We propose an integrated risk factor that includes fire and smoke hazard, exposure, and vulnerability as a method to identify ‘fires that matter’, that is, fires that have potentially devastating impacts on our communities. This approach enables pathways to delineate and prioritise science-informed planning strategies most likely to increase community resilience to fires.more » « less
-
Wildfire is a ubiquitous disturbance agent in subalpine forests in western North America. Lodgepole pine ( Pinus contorta var. latifolia), a dominant tree species in these forests, is largely resilient to high-severity fires, but this resilience may be compromised under future scenarios of altered climate and fire activity. We investigated fire occurrence and post-fire vegetation change in a lodgepole pine forest over the past 2500 years to understand ecosystem responses to variability in wildfire and climate. We reconstructed vegetation composition from pollen preserved in a sediment core from Chickaree Lake, Colorado, USA (1.5-ha lake), in Rocky Mountain National Park, and compared vegetation change to an existing fire history record. Pollen samples ( n = 52) were analyzed to characterize millennial-scale and short-term (decadal-scale) changes in vegetation associated with multiple high-severity fire events. Pollen assemblages were dominated by Pinus throughout the record, reflecting the persistence of lodgepole pine. Wildfires resulted in significant declines in Pinus pollen percentages, but pollen assemblages returned to pre-fire conditions after 18 fire events, within c.75 years. The primary broad-scale change was an increase in Picea, Artemisia, Rosaceae, and Arceuthobium pollen types, around 1155 calibrated years before present. The timing of this change is coincident with changes in regional pollen records, and a shift toward wetter winter conditions identified from regional paleoclimate records. Our results indicate the overall stability of vegetation in Rocky Mountain lodgepole pine forests during climate changes and repeated high-severity fires. Contemporary deviations from this pattern of resilience could indicate future recovery challenges in these ecosystems.more » « less
An official website of the United States government

