skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Harvesting sustainable energy through vortex-induced vibrations of finite length cylinder
Vortex-induced vibration (VIV) has emerged as a promising method for small-scale energy harvesting. This research explores the key parameters affecting VIV in a cylinder-cantilever beam system within a Reynolds number range of 400–7500. The investigation focused on identifying the airflow velocity thresholds that initiate vibrations, measuring peak vibration amplitudes, and determining the critical airflow velocities where vibrations are maximized. By systematically varying mass, stiffness, and cylinder diameter, we examined their distinct effects on system behavior. Key outcomes indicate that larger cylinder diameters lead to increased vibration amplitudes and broader operational bandwidths, while adding mass reduces the bandwidth. Higher stiffness boosts both the maximum amplitude and bandwidth, shifting these to higher airflow velocities. The lock-in regime was observed to initiate at a Strouhal number (St) between 0.175 and 0.197, with vibration cessation occurring at an approximately consistent Strouhal number for each cylinder diameter. The peak vibration amplitude occurred at St ≈ 0.16, with fluctuations of less than 5% across all models. Additionally, the wake structure behind the cylinder and its behavior across the vibration bandwidth were analyzed using flow visualization techniques. A hot-wire anemometer positioned downstream measured velocity fluctuations from vortex shedding. These findings offer practical insights for optimizing VIV-based energy harvesting, linking wake behavior to amplitude response and power output. This study contributes to the broader understanding of VIV energy harvesters and provides a foundation for validating numerical models and enhancing the efficiency of sustainable energy systems.  more » « less
Award ID(s):
2131600
PAR ID:
10620697
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Physics of Fluids
Volume:
37
Issue:
4
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vortex induced vibration (VIV) experienced during flow past a cylinder can reduce equipment performance and in some cases lead to failure. Previous studies have shown that the injection of bubbles in the flow over a cylinder typically leads to a monotonic increase in shedding frequency with void fraction, however, a satisfactory explanation for this phenomenon has not been proposed. Unexplained scatter in the data exists, including that the increase in shedding frequency is not universal. More research is needed to characterize the influence of bubbles on the wake structure, and subsequent shift in shedding frequency. To this aim, the effect of bubbles on the structure of the wake and VIV was examined over two values of Reynolds number, 𝑅𝑒𝐷 = 100, 000 and 160,000. Time-resolved particle image velocimetry (TR-PIV), proper orthogonal decomposition (POD) and spectral proper orthogonal decomposition (SPOD) of the wake structures, vibration of the cylinder, and bubble image velocimetry (BIV) were used to assess the flow topology changes under the influence of gas injection. Using SPOD/POD analysis in the near wake, it was found that the primary Karman shedding frequency decreased with the injection of gas, from a Strouhal number of St = 0.2 to St = 0.17−0.18; the width of the spectral peak was found to increase with void fraction. Notably, the vibration of the cylinder at the primary Karman shedding frequency was suppressed following the injection of gas, even at spanwiseaveraged volumetric qualities below 0.01%. This suppression occurred regardless of if gas was concentrated locally near the centerline of the channel, or along the span. BIV data suggests that gas accumulation in the near wake, driven by the high velocity vertical motion of gas, serves to uncouple the cylinder motion from the formation of the vortex street downstream while promoting faster wake recovery. 
    more » « less
  2. Energy harvesting from flow-induced vibrations has gained substantial attention in the last two decades due to the rising demand for renewable and sustainable energy sources, as well as the widely availability of these sources, offering a viable alternative in areas where other ambient energy sources may not be readily accessible. Flow-induced vibrations of bluff bodies are characterized by complex nonlinear dynamics, for which accurate models are currently lacking. In this work, a circular cylinder attached to the free end of a piezoelastic cantilever is considered for energy harvesting. When placed in a flow, this system undergoes vortex-induced vibrations. A reduced-order model is developed to understand fluid-structure interactions of this system. A wake oscillator has been used to describe vortex-induced vibrations and a finite-element model has been used to model the piezoelastic cantilever. The developed model is used to explore the interplay amongst the fluid, structure, and piezoelectric element. The results obtained are compared to experimental data from literature, in terms of the vibration amplitude, vibration frequency, and power obtained. Modifications to the wake oscillator model are examined to better reflect the fluid-structure interactions. It is found that there is a trade-off between accurately predicting the vibration amplitude and accurately predicting the vibration frequency. 
    more » « less
  3. null (Ed.)
    Cables of suspension, cable-stayed and tied-arch bridges, suspended roofs, and power transmission lines are prone to moderate to large-amplitude vibrations in wind because of their low inherent damping. Structural or fatigue failure of a cable, due to these vibrations, pose a significant threat to the safety and serviceability of these structures. Over the past few decades, many studies have investigated the mechanisms that cause different types of flow-induced vibrations in cables such as rain-wind induced vibration (RWIV), vortex-induced vibration (VIV), iced cable galloping, wake galloping, and dry-cable galloping that have resulted in an improved understanding of the cause of these vibrations. In this study, the parameters governing the turbulence-induced (buffeting) and motion-induced wind loads (self-excited) for inclined and yawed dry cables have been identified. These parameters facilitate the prediction of their response in turbulent wind and estimate the incipient condition for onset of dry-cable galloping. Wind tunnel experiments were performed to measure the parameters governing the aerodynamic and aeroelastic forces on a yawed dry cable. This study mainly focuses on the prediction of critical reduced velocity 〖(RV〗_cr) as a function of equivalent yaw angle (*) and Scruton number (Sc) through measurement of aerodynamic- damping and stiffness. Wind tunnel tests using a section model of a smooth cable were performed under uniform and smooth/gusty flow conditions in the AABL Wind and Gust Tunnel located at Iowa State University. Static model tests for equivalent yaw angles of 0º to 45º indicate that the mean drag coefficient 〖(C〗_D) and Strouhal number (St) of a yawed cable decreases with the yaw angle, while the mean lift coefficient 〖(C〗_L) remains zero in the subcritical Reynolds number (Re) regime. Dynamic one degree-of-freedom model tests in across-wind and along-wind directions resulted in the identification of buffeting indicial derivative functions and flutter derivatives of a yawed cable for a range of equivalent yaw angles. Empirical equations for mean drag coefficient, Strouhal number, buffeting indicial derivative functions and critical reduced velocity for dry-cable galloping are proposed for yawed cables. The results indicate a critical equivalent yaw angle of 45° for dry-cable galloping. A simplified design procedure is introduced to estimate the minimum damping required to arrest dry-cable galloping from occurring below the design wind speed of the cable structure. Furthermore, the results from this study can be applied to predict the wind load and response of a dry cable at a specified wind speed for a given yaw angle. 
    more » « less
  4. null (Ed.)
    A computational approach based on a k-ω delayed detached eddy simulation model for predicting aerodynamic loads on a smooth circular cylinder is verified against experiments. Comparisons with experiments are performed for flow over a rigidly mounted (static) cylinder and for an elastically-mounted rigid cylinder oscillating in the transverse direction due to vortex-induced vibration (VIV). For the static cases, measurement data from the literature is used to validate the predictions for normally incident flow. New experiments are conducted as a part of this study for yawed flow, where the cylinder axis is inclined with respect to the inflow velocity at the desired yaw angle, β = 30◦. Good agreement is observed between the predictions and measurements for mean and rms surface pressure. Three yawed flow cases (β = 15◦, 30◦, & 45◦) are simulated and the results are found to be independent of β (independence principle) when the flow speed normal to the cylinder axis is selected as the reference velocity scale. Dynamic (VIV) simulations for an elastically-mounted rigid cylinder are performed by coupling the flow solver with a solid dynamics solver where the cylinder motion is modeled as a mass–spring–damper system. The simulations accurately predict the displacement amplitude and unsteady loading over a wide range of reduced velocity, including the region where ‘‘lock-in’’ (synchronization) occurs. VIV simulations are performed at two yaw angles, β = 0◦ and 45◦ and the independence principle is found to be valid over the range of reduced velocities tested with a slightly higher discrepancy when the vortex shedding frequency is close to the natural frequency of the system. 
    more » « less
  5. The cross-flow vortex-induced vibration (VIV) response of an elastically mounted idealized undulatory seal whisker (USW) shape is investigated in a wide range of reduced velocity at angles of attack (AOAs) from 0° to 90° and a low Reynolds number of 300. The mass ratio is set to 1.0 to represent the real seal whisker. Dynamic mode decomposition is used to investigate the vortex shedding mode in various cases. In agreement with past studies, the VIV response of the USW is highly AOA-dependent because of the change in the underlying vortex dynamics. At zero AOA, the undulatory shape leads to a hairpin vortex mode that results in extremely low lift force oscillation with a lowered frequency. The frequency remains unaffected by VIV throughout the tested range of reduced velocity. As the AOA deviates from zero, alternating shedding of spanwise vortices becomes dominant. A mixed vortex shedding mode is observed at AOA = 15° in the transition. As the AOA deviated from zero, the VIV amplitude increases rapidly by two orders, reaching the maximum of about 3 times diameter at 90°. An infinite lock-in branch is present for AOA from 60° to 90°, where the VIV amplitude remains high regardless of the increase in reduced velocity. 
    more » « less