skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 25, 2026

Title: Unconscious Neural Activity Predicts Overt Attention in Visual Search
Abstract Unconscious neural activity has been shown to precede both motor and cognitive acts. In the present study, we investigated the neural antecedents of overt attention during visual search, where subjects make voluntary saccadic eye movements to search a cluttered stimulus array for a target item. Building on studies of both overt self-generated motor actions (Lau et al., 2004, Soon et al., 2008) and self-generated cognitive actions (Bengson et al., 2014, Soon et al., 2013), we hypothesized that brain activity prior to the onset of a search array would predict the direction of the first saccade during unguided visual search. Because both spatial attention and gaze are coordinated during visual search, both cognition and motor actions are coupled during visual search. A well-established finding in fMRI studies of willed action is that neural antecedents of the intention to make a motor act (e.g., reaching) can be identified seconds before the action occurs. Studies of the volitional control ofcovertspatial attention in EEG have shown that predictive brain activity is limited to only a few hundred milliseconds before a voluntary shift of covert spatial attention. In the present study, the visual search task and stimuli were designed so that subjects could not predict the onset of the search array. Perceptual task difficulty was high, such that they could not locate the target using covert attention alone, thus requiring overt shifts of attention (saccades) to carry out the visual search. If the first saccade to the array onset in unguided visual search shares mechanisms with willed shifts of covert attention, we expected predictive EEG alpha-band activity (8-12 Hz) immediately prior to the array onset (within 1 sec) (Bengson et al., 2014; Nadra et al., 2023). Alternatively, if they follow the principles of willed motor actions, predictive neural signals should be reflected in broadband EEG activity (Libet et al., 1983) and would likely emerge earlier (Soon et al., 2008). Applying support vector machine decoding, we found that the direction of the first saccade in an unguided visual search could be predicted up to two seconds preceding the search array’s onset in the broadband but not alpha-band EEG. These findings suggest that self-directed eye movements in visual search emerge from early preparatory neural activity more akin to willed motor actions than to covert willed attention. This highlights a distinct role for unconscious neural dynamics in shaping visual search behavior.  more » « less
Award ID(s):
2318886
PAR ID:
10620698
Author(s) / Creator(s):
; ;
Publisher / Repository:
bioRxiv
Date Published:
Subject(s) / Keyword(s):
EEG attention
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Attention is the ability to focus one's awareness on relevant events and objects while ignoring distracting ones. Laboratory studies of top-down voluntary attention commonly use predictive or instructional cues to direct attention. However, in real world scenarios, voluntary attention is not necessarily externally cued, but may be focused by internal, self-generated processes. The voluntary focusing of attention in the absence of external guidance has been referred to as “willed attention,” a term borrowed from the literature on willed motor actions. In a fashion similar to studies of willed (self-initiated) actions, during willed attention, participants are given the freedom to deploy attention based on their own free choices. Electrophysiological studies have shown that during willed attention, ongoing neural activity biases willed attention decisions on a moment-to-moment basis as reflected in transient patterns of brain electrical activity that predict where participants will later choose to focus their attention. Brain imaging studies have revealed that compared to cued attention, willed attention involves additional frontal cortical structures, which interact with the classic attentional control networks of the human brain to produce a modified network organization for willed attention control. In this introduction to willed attention, we briefly review the fields of voluntary attention and self-initiated motor actions, in order to describe willed attention and its neural correlates as they relate to the broader concepts of attention and volition. 
    more » « less
  2. In models of visual spatial attention control, it is commonly held that top–down control signals originate in the dorsal attention network, propagating to the visual cortex to modulate baseline neural activity and bias sensory processing. However, the precise distribution of these top–down influences across different levels of the visual hierarchy is debated. In addition, it is unclear whether these baseline neural activity changes translate into improved performance. We analyzed attention-related baseline activity during the anticipatory period of a voluntary spatial attention task, using two independent functional magnetic resonance imaging datasets and two analytic approaches. First, as in prior studies, univariate analysis showed that covert attention significantly enhanced baseline neural activity in higher-order visual areas contralateral to the attended visual hemifield, while effects in lower-order visual areas (e.g., V1) were weaker and more variable. Second, in contrast, multivariate pattern analysis (MVPA) revealed significant decoding of attention conditions across all visual cortical areas, with lower-order visual areas exhibiting higher decoding accuracies than higher-order areas. Third, decoding accuracy, rather than the magnitude of univariate activation, was a better predictor of a subject's stimulus discrimination performance. Finally, the MVPA results were replicated across two experimental conditions, where the direction of spatial attention was either externally instructed by a cue or based on the participants’ free choice decision about where to attend. Together, these findings offer new insights into the extent of attentional biases in the visual hierarchy under top–down control and how these biases influence both sensory processing and behavioral performance. 
    more » « less
  3. Abstract Rhythm perception depends on the ability to predict the onset of rhythmic events. Previous studies indicate beta band modulation is involved in predicting the onset of auditory rhythmic events (Fujioka et al., 2009, 2012; Snyder & Large, 2005). We sought to determine if similar processes are recruited for prediction of visual rhythms by investigating whether beta band activity plays a role in a modality‐dependent manner for rhythm perception. We looked at electroencephalography time–frequency neural correlates of prediction using an omission paradigm with auditory and visual rhythms. By using omissions, we can separate out predictive timing activity from stimulus‐driven activity. We hypothesized that there would be modality‐independent markers of rhythm prediction in induced beta band oscillatory activity, and our results support this hypothesis. We find induced and evoked predictive timing in both auditory and visual modalities. Additionally, we performed an exploratory‐independent components‐based spatial clustering analysis, and describe all resulting clusters. This analysis reveals that there may be overlapping networks of predictive beta activity based on common activation in the parietal and right frontal regions, auditory‐specific predictive beta in bilateral sensorimotor regions, and visually specific predictive beta in midline central, and bilateral temporal/parietal regions. This analysis also shows evoked predictive beta activity in the left sensorimotor region specific to auditory rhythms and implicates modality‐dependent networks for auditory and visual rhythm perception. 
    more » « less
  4. Abstract It has been debated whether salient distractors in visual search can be proactively suppressed to completely prevent attentional capture, as the occurrence of proactive suppression implies that the initial shift of attention is not entirely driven by physical salience. While the presence of a Pd component in the EEG (associated with suppression) without a preceding N2pc component (associated with selection) has been used as evidence for proactive suppression, the link between these ERPs and the underlying mechanisms is not always clear. This is exemplified in two recent articles that observed the same waveform pattern, where an early Pd-like component flipped to a N2pc-like component, but provided vastly different interpretations (Drisdelle, B. L., & Eimer, E. PD components and distractor inhibition in visual search: New evidence for the signal suppression hypothesis. Psychophysiology, 58, e13898, 2021; Kerzel, D., & Burra, N. Capture by context elements, not attentional suppression of distractors, explains the PD with small search displays. Journal of Cognitive Neuroscience, 32, 1170–1183, 2020). Using RAGNAROC (Wyble et al., Understanding visual attention with RAGNAROC: A Reflexive Attention Gradient through Neural AttRactOr Competition. Psychological Review, 127, 1163–1198, 2020), a computational model of reflexive attention, we successfully simulated this ERP pattern with minimal changes to its existing architecture, providing a parsimonious and mechanistic explanation for this flip in the EEG that is unique from both of the previous interpretations. Our account supports the occurrence of proactive suppression and demonstrates the benefits of incorporating computational modeling into theory building. 
    more » « less
  5. Abstract Studies of voluntary visual spatial attention have used attention-directing cues, such as arrows, to induce or instruct observers to focus selective attention on relevant locations in visual space to detect or discriminate subsequent target stimuli. In everyday vision, however, voluntary attention is influenced by a host of factors, most of which are quite different from the laboratory paradigms that use attention-directing cues. These factors include priming, experience, reward, meaning, motivations, and high-level behavioral goals. Attention that is endogenously directed in the absence of external attention-directing cues has been referred to as “self-initiated attention” or, as in our prior work, as “willed attention” where volunteers decide where to attend in response to a prompt to do so. Here, we used a novel paradigm that eliminated external influences (i.e., attention-directing cues and prompts) about where and/or when spatial attention should be directed. Using machine learning decoding methods, we showed that the well known lateralization of EEG alpha power during spatial attention was also present during purely self-generated attention. By eliminating explicit cues or prompts that affect the allocation of voluntary attention, this work advances our understanding of the neural correlates of attentional control and provides steps toward the development of EEG-based brain–computer interfaces that tap into human intentions. 
    more » « less