skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing multi-omics data imputation with NMF and GAN synergy
Abstract MotivationIntegrating multiple omics datasets can significantly advance our understanding of disease mechanisms, physiology, and treatment responses. However, a major challenge in multi-omics studies is the disparity in sample sizes across different datasets, which can introduce bias and reduce statistical power. To address this issue, we propose a novel framework, OmicsNMF, designed to impute missing omics data and enhance disease phenotype prediction. OmicsNMF integrates Generative Adversarial Networks (GANs) with Non-Negative Matrix Factorization (NMF). NMF is a well-established method for uncovering underlying patterns in omics data, while GANs enhance the imputation process by generating realistic data samples. This synergy aims to more effectively address sample size disparity, thereby improving data integration and prediction accuracy. ResultsFor evaluation, we focused on predicting breast cancer subtypes using the imputed data generated by our proposed framework, OmicsNMF. Our results indicate that OmicsNMF consistently outperforms baseline methods. We further assessed the quality of the imputed data through survival analysis, revealing that the imputed omics profiles provide significant prognostic power for both overall survival and disease-free status. Overall, OmicsNMF effectively leverages GANs and NMF to impute missing samples while preserving key biological features. This approach shows potential for advancing precision oncology by improving data integration and analysis. Availability and implementationSource code is available at: https://github.com/compbiolabucf/OmicsNMF.  more » « less
Award ID(s):
2246796 2421803
PAR ID:
10620707
Author(s) / Creator(s):
; ;
Editor(s):
Cheng, Jianlin
Publisher / Repository:
Oxford
Date Published:
Journal Name:
Bioinformatics
Volume:
40
Issue:
11
ISSN:
1367-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kendziorski, Christina (Ed.)
    Abstract MotivationPredictive biological signatures provide utility as biomarkers for disease diagnosis and prognosis, as well as prediction of responses to vaccination or therapy. These signatures are identified from high-throughput profiling assays through a combination of dimensionality reduction and machine learning techniques. The genes, proteins, metabolites, and other biological analytes that compose signatures also generate hypotheses on the underlying mechanisms driving biological responses, thus improving biological understanding. Dimensionality reduction is a critical step in signature discovery to address the large number of analytes in omics datasets, especially for multi-omics profiling studies with tens of thousands of measurements. Latent factor models, which can account for the structural heterogeneity across diverse assays, effectively integrate multi-omics data and reduce dimensionality to a small number of factors that capture correlations and associations among measurements. These factors provide biologically interpretable features for predictive modeling. However, multi-omics integration and predictive modeling are generally performed independently in sequential steps, leading to suboptimal factor construction. Combining these steps can yield better multi-omics signatures that are more predictive while still being biologically meaningful. ResultsWe developed a supervised variational Bayesian factor model that extracts multi-omics signatures from high-throughput profiling datasets that can span multiple data types. Signature-based multiPle-omics intEgration via lAtent factoRs (SPEAR) adaptively determines factor rank, emphasis on factor structure, data relevance and feature sparsity. The method improves the reconstruction of underlying factors in synthetic examples and prediction accuracy of coronavirus disease 2019 severity and breast cancer tumor subtypes. Availability and implementationSPEAR is a publicly available R-package hosted at https://bitbucket.org/kleinstein/SPEAR. 
    more » « less
  2. In an era when big data are becoming the norm, there is less concern with the quantity but more with the quality and completeness of the data. In many disciplines, data are collected from heterogeneous sources, resulting in multi-view or multi-modal datasets. The missing data problem has been challenging to address in multi-view data analysis. Especially, when certain samples miss an entire view of data, it creates the missing view problem. Classic multiple imputations or matrix completion methods are hardly effective here when no information can be based on in the specific view to impute data for such samples. The commonly-used simple method of removing samples with a missing view can dramatically reduce sample size, thus diminishing the statistical power of a subsequent analysis. In this paper, we propose a novel approach for view imputation via generative adversarial networks (GANs), which we name by VIGAN. This approach first treats each view as a separate domain and identifies domain-to-domain mappings via a GAN using randomly-sampled data from each view, and then employs a multi-modal denoising autoencoder (DAE) to reconstruct the missing view from the GAN outputs based on paired data across the views. Then, by optimizing the GAN and DAE jointly, our model enables the knowledge integration for domain mappings and view correspondences to effectively recover the missing view. Empirical results on benchmark datasets validate the VIGAN approach by comparing against the state of the art. The evaluation of VIGAN in a genetic study of substance use disorders further proves the effectiveness and usability of this approach in life science. 
    more » « less
  3. Abstract Biobanks that collect deep phenotypic and genomic data across many individuals have emerged as a key resource in human genetics. However, phenotypes in biobanks are often missing across many individuals, limiting their utility. We propose AutoComplete, a deep learning-based imputation method to impute or ‘fill-in’ missing phenotypes in population-scale biobank datasets. When applied to collections of phenotypes measured across ~300,000 individuals from the UK Biobank, AutoComplete substantially improved imputation accuracy over existing methods. On three traits with notable amounts of missingness, we show that AutoComplete yields imputed phenotypes that are genetically similar to the originally observed phenotypes while increasing the effective sample size by about twofold on average. Further, genome-wide association analyses on the resulting imputed phenotypes led to a substantial increase in the number of associated loci. Our results demonstrate the utility of deep learning-based phenotype imputation to increase power for genetic discoveries in existing biobank datasets. 
    more » « less
  4. IntroductionThe primary objective of this study was to identify variables that significantly influence the implementation of math Response to Intervention (RTI) at the school level, utilizing the ECLS-K: 2011 dataset. MethodsDue to missing values in the original dataset, a Random Forest algorithm was employed for data imputation, generating a total of 10 imputed datasets. Elastic net logistic regression, combined with nested cross-validation, was applied to each imputed dataset, potentially resulting in 10 models with different variables. Variables for the models derived from the imputed datasets were selected using four methods, leading to four candidate models for final selection. These models were assessed based on their performance of prediction accuracy, culminating in the selection of the final model that outperformed the others. Results and discussionMethod50and Methodcoefemerged as the most effective, achieving a balanced accuracy of 0.852. The ultimate model selected relevant variables that effectively predicted RTI. The predictive accuracy of the final model was also demonstrated by the receiver operating characteristic (ROC) plot and the corresponding area under the curve (AUC) value, indicating its ability to accurately forecast math RTI implementation in schools for the following year. 
    more » « less
  5. Objective: The rapid advancement of high-throughput technologies in the biomedical field has resulted in the accumulation of diverse omics data types, such as mRNA expression, DNA methylation, and microRNA expression, for studying various diseases. Integrating these multi-omics datasets enables a comprehensive understanding of the molecular basis of cancer and facilitates accurate prediction of disease progression. Methods: However, conventional approaches face challenges due to the dimensionality curse problem. This paper introduces a novel framework called Knowledge Distillation and Supervised Variational AutoEncoders utilizing View Correlation Discovery Network (KD-SVAE-VCDN) to address the integration of high-dimensional multi-omics data with limited common samples. Through our experimental evaluation, we demonstrate that the proposed KD-SVAE-VCDN architecture accurately predicts the progression of breast and kidney carcinoma by effectively classifying patients as long- or short-term survivors. Furthermore, our approach outperforms other state-of-the-art multi-omics integration models. Results: Our findings highlight the efficacy of the KD-SVAE-VCDN architecture in predicting the disease progression of breast and kidney carcinoma. By enabling the classification of patients based on survival outcomes, our model contributes to personalized and targeted treatments. The favorable performance of our approach in comparison to several existing models suggests its potential to contribute to the advancement of cancer understanding and management. Conclusion: The development of a robust predictive model capable of accurately forecasting disease progression at the time of diagnosis holds immense promise for advancing personalized medicine. By leveraging multi-omics data integration, our proposed KD-SVAE-VCDN framework offers an effective solution to this challenge, paving the way for more precise and tailored treatment strategies for patients with different types of cancer. 
    more » « less