Abstract The purpose of this paper is to introduce and study the following graph-theoretic paradigm. Let$$ \begin{align*}T_Kf(x)=\int K(x,y) f(y) d\mu(y),\end{align*} $$where$$f: X \to {\Bbb R}$$,Xa set, finite or infinite, andKand$$\mu $$denote a suitable kernel and a measure, respectively. Given a connected ordered graphGonnvertices, consider the multi-linear form$$ \begin{align*}\Lambda_G(f_1,f_2, \dots, f_n)=\int_{x^1, \dots, x^n \in X} \ \prod_{(i,j) \in {\mathcal E}(G)} K(x^i,x^j) \prod_{l=1}^n f_l(x^l) d\mu(x^l),\end{align*} $$where$${\mathcal E}(G)$$is the edge set ofG. Define$$\Lambda _G(p_1, \ldots , p_n)$$as the smallest constant$$C>0$$such that the inequality(0.1)$$ \begin{align} \Lambda_G(f_1, \dots, f_n) \leq C \prod_{i=1}^n {||f_i||}_{L^{p_i}(X, \mu)} \end{align} $$holds for all nonnegative real-valued functions$$f_i$$,$$1\le i\le n$$, onX. The basic question is, how does the structure ofGand the mapping properties of the operator$$T_K$$influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case$$X={\Bbb F}_q^d$$, thed-dimensional vector space over the field withqelements,$$K(x^i,x^j)$$is the indicator function of the sphere evaluated at$$x^i-x^j$$, and connected graphsGwith at most four vertices.
more »
« less
This content will become publicly available on June 6, 2026
Asymptotics for the spectral function on Zoll manifolds
On a smooth, compact, Riemannian manifold without boundary(M,g), let\Delta_{g}be the Laplace–Beltrami operator. We define the orthogonal projection operator \Pi_{I_\lambda}\colon L^{2}(M)\to \bigoplus_{\mathclap{\lambda_j\in I_\lambda}}\ker(\Delta_{g}+\lambda_{j}^{2}) for an intervalI_{\lambda}centered around\lambda\in\Rof a small, fixed length. The Schwartz kernel,\Pi_{I_\lambda}(x,y), of this operator plays a key role in the analysis of monochromatic random waves, a model for high energy eigenfunctions. It is expected that\Pi_{I_\lambda}(x,y)has universal asymptotics as\lambda \to \inftyin a shrinking neighborhood of the diagonal inM\times M(providedI_{\lambda}is chosen appropriately) and hence that certain statistics for monochromatic random waves have universal behavior. These asymptotics are well known for the torus and the round sphere, and were recently proved to hold near points inMwith few geodesic loops by Canzani–Hanin. In this article, we prove that the same universal asymptotics hold in the opposite case of Zoll manifolds (manifolds all of whose geodesics are closed with a common period) under an assumption on the volume of loops with length incommensurable with the minimal common period.
more »
« less
- Award ID(s):
- 2045494
- PAR ID:
- 10620728
- Publisher / Repository:
- EMS Press
- Date Published:
- Journal Name:
- Journal of Spectral Theory
- ISSN:
- 1664-039X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper introduces a novel generative encoder (GE) framework for generative imaging and image processing tasks like image reconstruction, compression, denoising, inpainting, deblurring, and super-resolution. GE unifies the generative capacity of GANs and the stability of AEs in an optimization framework instead of stacking GANs and AEs into a single network or combining their loss functions as in existing literature. GE provides a novel approach to visualizing relationships between latent spaces and the data space. The GE framework is made up of a pre-training phase and a solving phase. In the former, a GAN with generator \begin{document}$ G $$\end{document} capturing the data distribution of a given image set, and an AE network with encoder \begin{document}$$ E $$\end{document} that compresses images following the estimated distribution by \begin{document}$$ G $$\end{document} are trained separately, resulting in two latent representations of the data, denoted as the generative and encoding latent space respectively. In the solving phase, given noisy image \begin{document}$$ x = \mathcal{P}(x^*) $$\end{document}, where \begin{document}$$ x^* $$\end{document} is the target unknown image, \begin{document}$$ \mathcal{P} $$\end{document} is an operator adding an addictive, or multiplicative, or convolutional noise, or equivalently given such an image \begin{document}$$ x $$\end{document} in the compressed domain, i.e., given \begin{document}$$ m = E(x) $$\end{document}, the two latent spaces are unified via solving the optimization problem \begin{document}$$ z^* = \underset{z}{\mathrm{argmin}} \|E(G(z))-m\|_2^2+\lambda\|z\|_2^2 $$\end{document} and the image \begin{document}$$ x^* $$\end{document} is recovered in a generative way via \begin{document}$$ \hat{x}: = G(z^*)\approx x^* $$\end{document}, where \begin{document}$$ \lambda>0 $$\end{document}$ is a hyperparameter. The unification of the two spaces allows improved performance against corresponding GAN and AE networks while visualizing interesting properties in each latent space.more » « less
-
Abstract We obtain new optimal estimates for the$$L^{2}(M)\to L^{q}(M)$$ ,$$q\in (2,q_{c}]$$ ,$$q_{c}=2(n+1)/(n-1)$$ , operator norms of spectral projection operators associated with spectral windows$$[\lambda ,\lambda +\delta (\lambda )]$$ , with$$\delta (\lambda )=O((\log \lambda )^{-1})$$ on compact Riemannian manifolds$$(M,g)$$ of dimension$$n\ge 2$$ all of whose sectional curvatures are nonpositive or negative. We show that these two different types of estimates are saturated on flat manifolds or manifolds all of whose sectional curvatures are negative. This allows us to classify compact space forms in terms of the size of$$L^{q}$$ -norms of quasimodes for each Lebesgue exponent$$q\in (2,q_{c}]$$ , even though it is impossible to distinguish between ones of negative or zero curvature sectional curvature for any$$q>q_{c}$$ .more » « less
-
Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums.more » « less
-
Let\Sigmabe a strictly convex, compact patch of aC^{2}hypersurface in\mathbb{R}^{n}, with non-vanishing Gaussian curvature and surface measured\sigmainduced by the Lebesgue measure in\mathbb{R}^{n}. The Mizohata–Takeuchi conjecture states that \int |\widehat{g d\sigma}|^{2} w \leq C \|Xw\|_{\infty} \int |g|^{2} for allg\in L^{2}(\Sigma)and all weightsw \colon \mathbb{R}^{n}\rightarrow [0,+\infty), whereXdenotes theX-ray transform. As partial progress towards the conjecture, we show, as a straightforward consequence of recently-established decoupling inequalities, that for every\varepsilon>0, there exists a positive constantC_{\varepsilon}, which depends only on\Sigmaand\varepsilon, such that for allR \geq 1and all weightsw \colon \mathbb{R}^{n}\rightarrow [0,+\infty), we have \int_{B_R}|\widehat{g d\sigma}|^{2} w \leq C_{\varepsilon} R^{\varepsilon} \sup_{T} \Big(\int_{T} w^{(n+1)/2}\Big)^{2/(n+1)}\int |g|^{2}, whereTranges over the family of tubes in\mathbb{R}^{n}of dimensionsR^{1/2}\times \cdots \times R^{1/2}\times R. From this we deduce the Mizohata–Takeuchi conjecture with anR^{(n-1)/(n+1)}-loss; i.e., that \int_{B_R}|\widehat{g d\sigma}|^{2} w \leq C_{\varepsilon} R^{\frac{n-1}{n+1}+ \varepsilon}\|Xw\|_{\infty} \int |g|^{2} for any ballB_{R}of radiusRand any\varepsilon>0. The power(n-1)/(n+1)here cannot be replaced by anything smaller unless properties of\widehat{g d\sigma}beyond ‘decoupling axioms’ are exploited. We also provide estimates which improve this inequality under various conditions on the weight, and discuss some new cases where the conjecture holds.more » « less
An official website of the United States government
