Consider the linear transport equation in 1D under an external confining potential \begin{document}$$ \Phi $$\end{document}: \begin{document}$$ \begin{equation*} {\partial}_t f + v {\partial}_x f - {\partial}_x \Phi {\partial}_v f = 0. \end{equation*} $$\end{document} For \begin{document}$$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $$\end{document} (with \begin{document}$$ \varepsilon >0 $$\end{document} small), we prove phase mixing and quantitative decay estimates for \begin{document}$$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $$\end{document}, with an inverse polynomial decay rate \begin{document}$$ O({\langle} t{\rangle}^{-2}) $$\end{document}. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in \begin{document}$ 1 $$\end{document}D under the external potential \begin{document}$$ \Phi $$\end{document}$. 
                        more » 
                        « less   
                    
                            
                            Generative imaging and image processing via generative encoder
                        
                    
    
            This paper introduces a novel generative encoder (GE) framework for generative imaging and image processing tasks like image reconstruction, compression, denoising, inpainting, deblurring, and super-resolution. GE unifies the generative capacity of GANs and the stability of AEs in an optimization framework instead of stacking GANs and AEs into a single network or combining their loss functions as in existing literature. GE provides a novel approach to visualizing relationships between latent spaces and the data space. The GE framework is made up of a pre-training phase and a solving phase. In the former, a GAN with generator \begin{document}$ G $$\end{document} capturing the data distribution of a given image set, and an AE network with encoder \begin{document}$$ E $$\end{document} that compresses images following the estimated distribution by \begin{document}$$ G $$\end{document} are trained separately, resulting in two latent representations of the data, denoted as the generative and encoding latent space respectively. In the solving phase, given noisy image \begin{document}$$ x = \mathcal{P}(x^*) $$\end{document}, where \begin{document}$$ x^* $$\end{document} is the target unknown image, \begin{document}$$ \mathcal{P} $$\end{document} is an operator adding an addictive, or multiplicative, or convolutional noise, or equivalently given such an image \begin{document}$$ x $$\end{document} in the compressed domain, i.e., given \begin{document}$$ m = E(x) $$\end{document}, the two latent spaces are unified via solving the optimization problem \begin{document}$$ z^* = \underset{z}{\mathrm{argmin}} \|E(G(z))-m\|_2^2+\lambda\|z\|_2^2 $$\end{document} and the image \begin{document}$$ x^* $$\end{document} is recovered in a generative way via \begin{document}$$ \hat{x}: = G(z^*)\approx x^* $$\end{document}, where \begin{document}$$ \lambda>0 $$\end{document}$ is a hyperparameter. The unification of the two spaces allows improved performance against corresponding GAN and AE networks while visualizing interesting properties in each latent space. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10336727
- Date Published:
- Journal Name:
- Inverse Problems & Imaging
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 1930-8337
- Page Range / eLocation ID:
- 525
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            It is shown that for any positive integer \begin{document}$$ n \ge 3 $$\end{document}, there is a stable irreducible \begin{document}$$ n\times n $$\end{document} matrix \begin{document}$ A $$\end{document} with \begin{document}$$ 2n+1-\lfloor\frac{n}{3}\rfloor $$\end{document} nonzero entries exhibiting Turing instability. Moreover, when \begin{document}$$ n = 3 $$\end{document}, the result is best possible, i.e., every \begin{document}$$ 3\times 3 $$\end{document} stable matrix with five or fewer nonzero entries will not exhibit Turing instability. Furthermore, we determine all possible \begin{document}$$ 3\times 3 $$\end{document} irreducible sign pattern matrices with 6 nonzero entries which can be realized by a matrix \begin{document}$$ A $$\end{document}$ that exhibits Turing instability.more » « less
- 
            We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the \begin{document}$$ S_p $$\end{document} estimate of [7], we prove regularity in the kinetic Sobolev spaces \begin{document}$$ S_p $$\end{document} and anisotropic Hölder spaces for such weak solutions. Such \begin{document}$$ S_p $$\end{document} regularity leads to the uniqueness of weak solutions.more » « less
- 
            We study the convergence rate of a continuous-time simulated annealing process \begin{document}$$ (X_t; \, t \ge 0) $$\end{document} for approximating the global optimum of a given function \begin{document}$ f $$\end{document}. We prove that the tail probability \begin{document}$$ \mathbb{P}(f(X_t) > \min f +\delta) $$\end{document}$ decays polynomial in time with an appropriately chosen cooling schedule of temperature, and provide an explicit convergence rate through a non-asymptotic bound. Our argument applies recent development of the Eyring-Kramers law on functional inequalities for the Gibbs measure at low temperatures.more » « less
- 
            Let \begin{document}$$ f_c(z) = z^2+c $$\end{document} for \begin{document}$$ c \in {\mathbb C} $$\end{document}. We show there exists a uniform upper bound on the number of points in \begin{document}$$ {\mathbb P}^1( {\mathbb C}) $$\end{document} that can be preperiodic for both \begin{document}$$ f_{c_1} $$\end{document} and \begin{document}$$ f_{c_2} $$\end{document}, for any pair \begin{document}$$ c_1\not = c_2 $$\end{document} in \begin{document}$$ {\mathbb C} $$\end{document}. The proof combines arithmetic ingredients with complex-analytic: we estimate an adelic energy pairing when the parameters lie in \begin{document}$$ \overline{\mathbb{Q}} $$\end{document}, building on the quantitative arithmetic equidistribution theorem of Favre and Rivera-Letelier, and we use distortion theorems in complex analysis to control the size of the intersection of distinct Julia sets. The proofs are effective, and we provide explicit constants for each of the results.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    