Abstract The Allen‐Cahn equation satisfies the maximum bound principle, that is, its solution is uniformly bounded for all time by a positive constant under appropriate initial and/or boundary conditions. It has been shown recently that the time‐discrete solutions produced by low regularity integrators (LRIs) are likewise bounded in the infinity norm; however, the corresponding fully discrete error analysis is still lacking. This work is concerned with convergence analysis of the fully discrete numerical solutions to the Allen‐Cahn equation obtained based on two first‐order LRIs in time and the central finite difference method in space. By utilizing some fundamental properties of the fully discrete system and the Duhamel's principle, we prove optimal error estimates of the numerical solutions in time and space while the exact solution is only assumed to be continuous in time. Numerical results are presented to confirm such error estimates and show that the solution obtained by the proposed LRI schemes is more accurate than the classical exponential time differencing (ETD) scheme of the same order.
more »
« less
This content will become publicly available on December 1, 2025
Low Regularity Integrators for the Conservative Allen–Cahn Equation with a Nonlocal Constraint
In contrast to the classical Allen-Cahn equation, the conservative Allen-Cahn equation with a nonlocal Lagrange multiplier not only satisfies the maximum bound principle (MBP) and energy dissipation law but also ensures mass conservation. Many existing schemes often fail to preserve all these properties at the discrete level or require high regularity in time on the exact solution for convergence analysis. In this paper, we construct a new class of low regularity integrators (LRIs) for time discretization of the conservative Allen-Cahn equation by repeatedly using Duhamel's formula. The proposed first- and second-order LRI schemes are shown to conserve mass unconditionally and satisfy the MBP under some time step size constraints. Temporal error estimates for these schemes are derived under a low regularity assumption that the exact solution is only Lipschitz continuous in time, followed by a rigorous proof for energy stability of the corresponding time-discrete solutions. Various numerical experiments and comparisons in two and three dimensions are presented to verify the theoretical results and illustrate the performance of the LRI schemes, especially when the interfacial parameter approaches zero.
more »
« less
- Award ID(s):
- 2041884
- PAR ID:
- 10620751
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of Scientific Computing
- Volume:
- 101
- Issue:
- 3
- ISSN:
- 0885-7474
- Subject(s) / Keyword(s):
- Conservative Allen-Cahn equation Low regularity integrators Mass conservation Maximum bound principle Energy stability
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A hierarchy of Plateau problems and the approximation of Plateau's laws via the Allen--Cahn equationWe introduce a diffused interface formulation of the Plateau problem, where the Allen--Cahn energy is minimized under a volume constraint and a spanning condition on the level sets of the densities. We discuss two singular limits of these Allen--Cahn Plateau problems: when , we prove convergence to the Gauss' capillarity formulation of the Plateau problem with positive volume ; and when , and , we prove convergence to the classical Plateau problem (in the homotopic spanning formulation of Harrison and Pugh). As a corollary of our analysis we resolve the incompatibility between Plateau's laws and the Allen--Cahn equation implied by a regularity theorem of Tonegawa and Wickramasekera. In particular, we show that Plateau-type singularities can be approximated by energy minimizing solutions of the Allen--Cahn equation with a volume Lagrange multiplier and a transmission condition on a spanning free boundary.more » « less
-
Abstract We propose two mass and heat energy conservative, unconditionally stable, decoupled numerical algorithms for solving the Cahn–Hilliard–Navier–Stokes–Darcy–Boussinesq system that models thermal convection of two‐phase flows in superposed free flow and porous media. The schemes totally decouple the computation of the Cahn–Hilliard equation, the Darcy equations, the heat equation, the Navier–Stokes equations at each time step, and thus significantly reducing the computational cost. We rigorously show that the schemes are conservative and energy‐law preserving. Numerical results are presented to demonstrate the accuracy and stability of the algorithms.more » « less
-
null (Ed.)Abstract Adaptive time stepping methods for metastable dynamics of the Allen–Cahn and Cahn–Hilliard equations are investigated in the spatially continuous, semi-discrete setting. We analyse the performance of a number of first and second order methods, formally predicting step sizes required to satisfy specified local truncation error $$\sigma $$ σ in the limit of small length scale parameter $$\epsilon \rightarrow 0$$ ϵ → 0 during meta-stable dynamics. The formal predictions are made under stability assumptions that include the preservation of the asymptotic structure of the diffuse interface, a concept we call profile fidelity. In this setting, definite statements about the relative behaviour of time stepping methods can be made. Some methods, including all so-called energy stable methods but also some fully implicit methods, require asymptotically more time steps than others. The formal analysis is confirmed in computational studies. We observe that some provably energy stable methods popular in the literature perform worse than some more standard schemes. We show further that when Backward Euler is applied to meta-stable Allen–Cahn dynamics, the energy decay and profile fidelity properties for these discretizations are preserved for much larger time steps than previous analysis would suggest. The results are established asymptotically for general interfaces, with a rigorous proof for radial interfaces. It is shown analytically and computationally that for most reaction terms, Eyre type time stepping performs asymptotically worse due to loss of profile fidelity.more » « less
-
Abstract We consider a family of variable time-stepping Dahlquist-Liniger-Nevanlinna (DLN) schemes, which is unconditionally non-linear stable and second order accurate, for the Allen-Cahn equation. The finite element methods are used for the spatial discretization. For the non-linear term, we combine the DLN scheme with two efficient temporal algorithms: partially implicit modified algorithm and scalar auxiliary variable algorithm. For both approaches, we prove the unconditional, long-term stability of the model energy under any arbitrary time step sequence. Moreover, we provide rigorous error analysis for the partially implicit modified algorithm with variable time-stepping. Efficient time-adaptive algorithms based on these schemes are also proposed. Several one- and two-dimensional numerical tests are presented to verify the properties of the proposed time-adaptive DLN methods.more » « less
An official website of the United States government
