skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A hierarchy of Plateau problems and the approximation of Plateau's laws via the Allen--Cahn equation
We introduce a diffused interface formulation of the Plateau problem, where the Allen--Cahn energy is minimized under a volume constraint and a spanning condition on the level sets of the densities. We discuss two singular limits of these Allen--Cahn Plateau problems: when , we prove convergence to the Gauss' capillarity formulation of the Plateau problem with positive volume ; and when , and , we prove convergence to the classical Plateau problem (in the homotopic spanning formulation of Harrison and Pugh). As a corollary of our analysis we resolve the incompatibility between Plateau's laws and the Allen--Cahn equation implied by a regularity theorem of Tonegawa and Wickramasekera. In particular, we show that Plateau-type singularities can be approximated by energy minimizing solutions of the Allen--Cahn equation with a volume Lagrange multiplier and a transmission condition on a spanning free boundary.  more » « less
Award ID(s):
1840314 2247544
PAR ID:
10598349
Author(s) / Creator(s):
; ;
Publisher / Repository:
arxiv
Date Published:
Edition / Version:
2312.11139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In contrast to the classical Allen-Cahn equation, the conservative Allen-Cahn equation with a nonlocal Lagrange multiplier not only satisfies the maximum bound principle (MBP) and energy dissipation law but also ensures mass conservation. Many existing schemes often fail to preserve all these properties at the discrete level or require high regularity in time on the exact solution for convergence analysis. In this paper, we construct a new class of low regularity integrators (LRIs) for time discretization of the conservative Allen-Cahn equation by repeatedly using Duhamel's formula. The proposed first- and second-order LRI schemes are shown to conserve mass unconditionally and satisfy the MBP under some time step size constraints. Temporal error estimates for these schemes are derived under a low regularity assumption that the exact solution is only Lipschitz continuous in time, followed by a rigorous proof for energy stability of the corresponding time-discrete solutions. Various numerical experiments and comparisons in two and three dimensions are presented to verify the theoretical results and illustrate the performance of the LRI schemes, especially when the interfacial parameter approaches zero. 
    more » « less
  2. The Allen–Cahn equation is a semilinear PDE which is deeply linked to the theory of minimal hypersurfaces via a singular limit. We prove curvature estimates and strong sheet separation estimates for stable solutions (building on recent work of Wang–Wei) of the Allen-Cahn equation on a 3-manifold. Using these, we are able to show that for generic metrics on a 3-manifold, minimal surfaces arising from Allen–Cahn solutions with bounded energy and bounded Morse index are two-sided and occur with multiplicity one and the expected Morse index. This confirms, in the Allen–Cahn setting, a strong form of the multiplicity one-conjecture and the index lower bound conjecture of Marques–Neves in 3-dimensions regarding min-max constructions of minimal surfaces. Allen–Cahn min-max constructions were recently carried out by Guaraco and Gaspar–Guaraco. Our resolution of the multiplicity-one and the index lower bound conjectures shows that these constructions can be applied to give a new proof of Yau's conjecture on infinitely many minimal surfaces in a 3-manifold with a generic metric (recently proven by Irie–Marques–Neves) with new geometric conclusions. Namely, we prove that a 3-manifold with a generic metric contains, for every p = 1, 2, 3,…, a two-sided embedded minimal surface with Morse index p and area ~ p13, as conjectured by Marques-Neves. 
    more » « less
  3. Abstract The Allen‐Cahn equation satisfies the maximum bound principle, that is, its solution is uniformly bounded for all time by a positive constant under appropriate initial and/or boundary conditions. It has been shown recently that the time‐discrete solutions produced by low regularity integrators (LRIs) are likewise bounded in the infinity norm; however, the corresponding fully discrete error analysis is still lacking. This work is concerned with convergence analysis of the fully discrete numerical solutions to the Allen‐Cahn equation obtained based on two first‐order LRIs in time and the central finite difference method in space. By utilizing some fundamental properties of the fully discrete system and the Duhamel's principle, we prove optimal error estimates of the numerical solutions in time and space while the exact solution is only assumed to be continuous in time. Numerical results are presented to confirm such error estimates and show that the solution obtained by the proposed LRI schemes is more accurate than the classical exponential time differencing (ETD) scheme of the same order. 
    more » « less
  4. TheIsing modelof statistical physics has served as a keystone example of phase transitions, thermodynamic limits, scaling laws, and many other phenomena and mathematical methods. We introduce and explore anIsing game, a variant of the Ising model that features competing agents influencing the behavior of the spins. With long-range interactions, we consider a mean-field limit resulting in a nonlocal potential game at the mesoscopic scale. This game exhibits a phase transition and multiple constant Nash-equilibria in the supercritical regime. Our analysis focuses on a sharp interface limit for which potential minimizing solutions to the Ising game concentrate on two of the constant Nash-equilibria. We show that the mesoscopic problem can be recast as a mixed local/nonlocal space-time Allen-Cahn type minimization problem. We prove, using a Γ-convergence argument, that the limiting interface minimizes a space-time anisotropic perimeter type energy functional. This macroscopic scale problem could also be viewed as a problem of optimal control of interface motion. Sharp interface limits of Allen-Cahn type functionals have been well studied. We build on that literature with new techniques to handle a mixture of local derivative terms and nonlocal interactions. The boundary conditions imposed by the game theoretic considerations also appear as novel terms and require special treatment. 
    more » « less
  5. The primal variational formulation of the fourth-order Cahn-Hilliard equation requires C1-continuous finite element discretizations, e.g., in the context of isogeometric analysis. In this paper, we explore the variational imposition of essential boundary conditions that arise from the thermodynamic derivation of the Cahn-Hilliard equation in primal variables. Our formulation is based on the symmetric variant of Nitsche's method, does not introduce additional degrees of freedom and is shown to be variationally consistent. In contrast to strong enforcement, the new boundary condition formulation can be naturally applied to any mapped isogeometric parametrization of any polynomial degree. In addition, it preserves full accuracy, including higher-order rates of convergence, which we illustrate for boundary-fitted discretizations of several benchmark tests in one, two and three dimensions. Unfitted Cartesian B-spline meshes constitute an effective alternative to boundary-fitted isogeometric parametrizations for constructing C1-continuous discretizations, in particular for complex geometries. We combine our variational boundary condition formulation with unfitted Cartesian B-spline meshes and the finite cell method to simulate chemical phase segregation in a composite electrode. This example, involving coupling of chemical fields with mechanical stresses on complex domains and coupling of different materials across complex interfaces, demonstrates the flexibility of variational boundary conditions in the context of higher-order unfitted isogeometric discretizations. 
    more » « less