Abstract In this paper, we introduce a new framework for deriving partitioned implicit-exponential integrators for stiff systems of ordinary differential equations and construct several time integrators of this type. The new approach is suited for solving systems of equations where the forcing term is comprised of several additive nonlinear terms. We analyze the stability, convergence, and efficiency of the new integrators and compare their performance with existing schemes for such systems using several numerical examples. We also propose a novel approach to visualizing the linear stability of the partitioned schemes, which provides a more intuitive way to understand and compare the stability properties of various schemes. Our new integrators are A-stable, second-order methods that require only one call to the linear system solver and one exponential-like matrix function evaluation per time step. 
                        more » 
                        « less   
                    This content will become publicly available on June 1, 2026
                            
                            Noniterative localized exponential time differencing methods for hyperbolic conservation laws
                        
                    
    
            The paper is concerned with efficient time discretization methods based on exponential integrators for scalar hyperbolic conservation laws. The model problem is first discretized in space by the discontinuous Galerkin method, resulting in a system of nonlinear ordinary differential equations. To solve such a system, exponential time differencing of order 2 (ETDRK2) is employed with Jacobian linearization at each time step. The scheme is fully explicit and relies on the computation of matrix exponential vector products. To accelerate such computation, we further construct a noniterative, nonoverlapping domain decomposition algorithm, namely localized ETDRK2, which loosely decouples the system at each time step via suitable interface conditions. Temporal error analysis of the proposed global and localized ETDRK2 schemes is rigorously proved; moreover, the schemes are shown to be conservative under periodic boundary conditions. Numerical results for the Burgers' equation in one and two dimensions (with moving shocks) are presented to verify the theoretical results and illustrate the performance of the global and localized ETDRK2 methods where large time step sizes can be used without affecting numerical stability. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2041884
- PAR ID:
- 10620756
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Advances in Computational Mathematics
- Volume:
- 51
- Issue:
- 3
- ISSN:
- 1019-7168
- Subject(s) / Keyword(s):
- Exponential time differencing Runge-Kutta discontinuous Galerkin nonoverlapping domain decomposition hyperbolic conservation laws temporal error estimates.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We propose two mass and heat energy conservative, unconditionally stable, decoupled numerical algorithms for solving the Cahn–Hilliard–Navier–Stokes–Darcy–Boussinesq system that models thermal convection of two‐phase flows in superposed free flow and porous media. The schemes totally decouple the computation of the Cahn–Hilliard equation, the Darcy equations, the heat equation, the Navier–Stokes equations at each time step, and thus significantly reducing the computational cost. We rigorously show that the schemes are conservative and energy‐law preserving. Numerical results are presented to demonstrate the accuracy and stability of the algorithms.more » « less
- 
            In this paper, we consider numerical approximations for the viscous Cahn–Hilliard equa- tion with hyperbolic relaxation. This type of equations processes energy-dissipative struc- ture. The main challenge in solving such a diffusive system numerically is how to develop high order temporal discretization for the hyperbolic and nonlinear terms, allowing large time-marching step, while preserving the energy stability, i.e. the energy dissipative structure at the time-discrete level. We resolve this issue by developing two second-order time-marching schemes using the recently developed ‘‘Invariant Energy Quadratization’’ approach where all nonlinear terms are discretized semi-explicitly. In each time step, one only needs to solve a symmetric positive definite (SPD) linear system. All the proposed schemes are rigorously proven to be unconditionally energy stable, and the second-order convergence in time has been verified by time step refinement tests numerically. Various 2D and 3D numerical simulations are presented to demonstrate the stability, accuracy, and efficiency of the proposed schemes.more » « less
- 
            In this paper, we propose full discrete linear schemes for the molecular beam epitaxy (MBE) model with slope selection, which are shown to be unconditionally energy stable and unique solvable. In details, using the invariant energy quadratization (IEQ) approach, along with a regularized technique, the MBE model is first discretized in time using either Crank–Nicolson or Adam–Bashforth strategies. The semi-discrete schemes are shown to be energy stable and unique solvable. Then we further use Fourier-spectral methods to discretize the space, ending with full discrete schemes that are energy-stable and unique solvable. In particular, the full discrete schemes are linear such that only a linear algebra problem need to be solved at each time step. Through numerical tests, we have shown a proper choice of the regularization parameter provides better stability and accuracy, such that larger time step is feasible. Afterward, we present several numerical simulations to demonstrate the accuracy and efficiency of our newly proposed schemes. The linearizing and regularizing strategy used in this paper could be readily applied to solve a class of phase field models that are derived from energy variation.more » « less
- 
            In this paper, we present efficient numerical schemes based on the Lagrange multiplier approach for the Navier-Stokes equations. By introducing a dynamic equation (involving the kinetic energy, the Lagrange multiplier, and a regularization parameter), we form a new system which incorporates the energy evolution process but is still equivalent to the original equations. Such nonlinear system is then discretized in time based on the backward differentiation formulas, resulting in a dynamically regularized Lagrange multiplier (DRLM) method. First- and second-order DRLM schemes are derived and shown to be unconditionally energy stable with respect to the original variables. The proposed schemes require only the solutions of two linear Stokes systems and a scalar quadratic equation at each time step. Moreover, with the introduction of the regularization parameter, the Lagrange multiplier can be uniquely determined from the quadratic equation, even with large time step sizes, without affecting accuracy and stability of the numerical solutions. Fully discrete energy stability is also proved with the Marker-and-Cell (MAC) discretization in space. Various numerical experiments in two and three dimensions verify the convergence and energy dissipation as well as demonstrate the accuracy and robustness of the proposed DRLM schemes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
