In this paper, we present efficient numerical schemes based on the Lagrange multiplier approach for the Navier-Stokes equations. By introducing a dynamic equation (involving the kinetic energy, the Lagrange multiplier, and a regularization parameter), we form a new system which incorporates the energy evolution process but is still equivalent to the original equations. Such nonlinear system is then discretized in time based on the backward differentiation formulas, resulting in a dynamically regularized Lagrange multiplier (DRLM) method. First- and second-order DRLM schemes are derived and shown to be unconditionally energy stable with respect to the original variables. The proposed schemes require only the solutions of two linear Stokes systems and a scalar quadratic equation at each time step. Moreover, with the introduction of the regularization parameter, the Lagrange multiplier can be uniquely determined from the quadratic equation, even with large time step sizes, without affecting accuracy and stability of the numerical solutions. Fully discrete energy stability is also proved with the Marker-and-Cell (MAC) discretization in space. Various numerical experiments in two and three dimensions verify the convergence and energy dissipation as well as demonstrate the accuracy and robustness of the proposed DRLM schemes.
more »
« less
Regularized linear schemes for the molecular beam epitaxy model with slope selection
In this paper, we propose full discrete linear schemes for the molecular beam epitaxy (MBE) model with slope selection, which are shown to be unconditionally energy stable and unique solvable. In details, using the invariant energy quadratization (IEQ) approach, along with a regularized technique, the MBE model is first discretized in time using either Crank–Nicolson or Adam–Bashforth strategies. The semi-discrete schemes are shown to be energy stable and unique solvable. Then we further use Fourier-spectral methods to discretize the space, ending with full discrete schemes that are energy-stable and unique solvable. In particular, the full discrete schemes are linear such that only a linear algebra problem need to be solved at each time step. Through numerical tests, we have shown a proper choice of the regularization parameter provides better stability and accuracy, such that larger time step is feasible. Afterward, we present several numerical simulations to demonstrate the accuracy and efficiency of our newly proposed schemes. The linearizing and regularizing strategy used in this paper could be readily applied to solve a class of phase field models that are derived from energy variation.
more »
« less
- Award ID(s):
- 1720212
- PAR ID:
- 10063236
- Date Published:
- Journal Name:
- Applied numerical mathematics
- Volume:
- 128
- ISSN:
- 0168-9274
- Page Range / eLocation ID:
- 139-156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we consider numerical approximations for the viscous Cahn–Hilliard equa- tion with hyperbolic relaxation. This type of equations processes energy-dissipative struc- ture. The main challenge in solving such a diffusive system numerically is how to develop high order temporal discretization for the hyperbolic and nonlinear terms, allowing large time-marching step, while preserving the energy stability, i.e. the energy dissipative structure at the time-discrete level. We resolve this issue by developing two second-order time-marching schemes using the recently developed ‘‘Invariant Energy Quadratization’’ approach where all nonlinear terms are discretized semi-explicitly. In each time step, one only needs to solve a symmetric positive definite (SPD) linear system. All the proposed schemes are rigorously proven to be unconditionally energy stable, and the second-order convergence in time has been verified by time step refinement tests numerically. Various 2D and 3D numerical simulations are presented to demonstrate the stability, accuracy, and efficiency of the proposed schemes.more » « less
-
ABSTRACT This paper is concerned with efficient and accurate numerical schemes for the Cahn‐Hilliard‐Navier‐Stokes phase field model of binary immiscible fluids. By introducing two Lagrange multipliers for each of the Cahn‐Hilliard and Navier‐Stokes parts, we reformulate the original model problem into an equivalent system that incorporates the energy evolution process. Such a nonlinear, coupled system is then discretized in time using first‐ and second‐order backward differentiation formulas, in which all nonlinear terms are treated explicitly and no extra stabilization term is imposed. The proposed dynamically regularized Lagrange multiplier (DRLM) schemes are mass‐conserving and unconditionally energy‐stable with respect to the original variables. In addition, the schemes are fully decoupled: Each time step involves solving two biharmonic‐type equations and two generalized linear Stokes systems, together with two nonlinear algebraic equations for the Lagrange multipliers. A key feature of the DRLM schemes is the introduction of the regularization parameters which ensure the unique determination of the Lagrange multipliers and mitigate the time step size constraint without affecting the accuracy of the numerical solution, especially when the interfacial width is small. Various numerical experiments are presented to illustrate the accuracy and robustness of the proposed DRLM schemes in terms of convergence, mass conservation, and energy stability.more » « less
-
In this paper, we propose and study first- and second-order (in time) stabilized linear finite element schemes for the incompressible Navier-Stokes (NS) equations. The energy, momentum, and angular momentum conserving (EMAC) formulation has emerged as a promising approach for conserving energy, momentum, and angular momentum of the NS equations, while the exponential scalar auxiliary variable (ESAV) has become a popular technique for designing linear energy-stable numerical schemes. Our method leverages the EMAC formulation and the Taylor-Hood element with grad-div stabilization for spatial discretization. We adopt the implicit-explicit backward differential formulas (BDFs) coupled with a novel stabilized ESAV approach for time stepping. For the solution process, we develop an efficient decoupling technique for the resulting fully-discrete systems so that only one linear Stokes solve is needed at each time step, which is similar to the cost of classic implicit-explicit BDF schemes for the NS equations. Robust optimal error estimates are successfully derived for both velocity and pressure for the two proposed schemes, with Gronwall constants that are particularly independent of the viscosity. Furthermore, it is rigorously shown that the grad-div stabilization term can greatly alleviate the viscosity-dependence of the mesh size constraint, which is required for error estimation when such a term is not present in the schemes. Various numerical experiments are conducted to verify the theoretical results and demonstrate the effectiveness and efficiency of the grad-div and ESAV stabilization strategies and their combination in the proposed numerical schemes, especially for problems with high Reynolds numbers.more » « less
-
In this paper, we consider Maxwell’s equations in linear dispersive media described by a single-pole Lorentz model for electronic polarization. We study two classes of commonly used spatial discretizations: finite difference methods (FD) with arbitrary even order accuracy in space and high spatial order discontinuous Galerkin (DG) finite element methods. Both types of spatial discretizations are coupled with second order semi-implicit leap-frog and implicit trapezoidal temporal schemes. By performing detailed dispersion analysis for the semi-discrete and fully discrete schemes, we obtain rigorous quantification of the dispersion error for Lorentz dispersive dielectrics. In particular, comparisons of dispersion error can be made taking into account the model parameters, and mesh sizes in the design of the two types of schemes. This work is a continuation of our previous research on energy-stable numerical schemes for nonlinear dispersive optical media [6,7]. The results for the numerical dispersion analysis of the reduced linear model, considered in the present paper, can guide us in the optimal choice of discretization parameters for the more complicated and nonlinear models. The numerical dispersion analysis of the fully discrete FD and DG schemes, for the dispersive Maxwell model considered in this paper, clearly indicate the dependence of the numerical dispersion errors on spatial and temporal discretizations, their order of accuracy, mesh discretization parameters and model parameters. The results obtained here cannot be arrived at by considering discretizations of Maxwell’s equations in free space. In particular, our results contrast the advantages and disadvantages of using high order FD or DG schemes and leap-frog or trapezoidal time integrators over different frequency ranges using a variety of measuresmore » « less
An official website of the United States government

