skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unraveling the Biogeochemical Drivers of Aragonite Saturation State in Baffin Bay: Insights From the West Greenland Continental Shelf
Abstract This study investigates the biogeochemical drivers of aragonite saturation state (ΩAr) in Baffin Bay, with a focus on the relatively undersampled west Greenland shelf. Our findings reveal two main depth‐dependant processes controlling the spatial distribution of ΩArin Baffin Bay; within the upper 200 m, lower ΩArcoincides with increasing fractions of Arctic‐outflow waters, while below 200 m organic matter respiration decreases ΩAr. A temporal analysis comparing historical measurements from 1997 and 2004 with our 2019 data set reveals a significant decrease in the ΩArof Arctic‐outflow waters, coinciding with reduced total alkalinity (TA). However, no discernible anthropogenic ocean acidification signal is identified. Significant Arctic water fractions (20%–40%) are found to be present on the west Greenland shelf, associated with reduced TA and ΩAr. A numerical modeling simulation incorporating a passive tracer demonstrates that periodic changes in wind direction lead to a switch from onshore to offshore Ekman transport along the Baffin Island current, transporting Arctic waters toward the west Greenland shelf. This challenges the conventional understanding of Baffin Bay's circulation and underscores the need for further research on the region's physical oceanography. Based on salinity‐TA relationships, surface waters on the west Greenland shelf have a significantly lower meteoric TA end‐member compared to waters of the Baffin Island Current in western Baffin Bay. The low eastern TA freshwater end‐member agrees well with recent glacial meltwater TA measurements, suggesting that glacial meltwater is the main freshwater source to surface waters on the west Greenland shelf.  more » « less
Award ID(s):
0632231
PAR ID:
10620830
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
8
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Three dominant characteristics and underlying dynamics of the seasonal cycle in Baffin Bay are discussed. The study is based on a regional, high‐resolution coupled sea ice‐ocean numerical model that complements our understanding drawn from observations. Subject to forcing from the atmosphere, sea ice, Greenland, and other ocean basins, the ocean circulation exhibits complex seasonal variations that influence Arctic freshwater storage and export. The basin‐scale barotropic circulation is generally stronger (weaker) in summer (winter). The interior recirculation (∼2 Sv) is primarily driven by oscillating along‐topography surface stress. The volume transport along the Baffin Island coast is also influenced by Arctic inflows (∼0.6 Sv) via Smith Sound and Lancaster Sound with maximum (minimum) in June‐August (October‐December). In addition to the barotropic variation, the Baffin Island Current also has changing vertical structure with the upper‐ocean baroclinicity weakened in winter‐spring. It is due to a cross‐shelf circulation associated with spatially variable ice‐ocean stresses that flattens isopycnals. Greenland runoff and sea ice processes dominate buoyancy forcing to Baffin Bay. Opposite to the runoff that freshens the west Greenland shelf, stronger salinification by ice formation compared to freshening by ice melt enables a net densification in the interior of Baffin Bay. Net sea ice formation in the past 30 years contributes to ∼25% of sea ice export via Davis Strait. The seasonal variability in baroclinicity and water mass transformation changes in recent decades based on the simulation. 
    more » « less
  2. Abstract Coastal waters in the Labrador Sea are influenced by the seasonal input of meltwater from the Greenland ice sheet, which is predicted to more than double by the end of the century. Mechanisms controlling the offshore export of meltwater can have a significant effect on stratification and vertical stability in the Labrador Sea, being particularly important if the meltwater is transported toward the interior of the basin where winter convection occurs. Here we use a high‐resolution ocean model to show that coastal upwelling winds play a critical role transporting the meltwater offshore to about 150 km from the coast, where increased eddy activity and mean circulation can then transport the meltwater farther offshore. While meltwater discharged from West Greenland is either transported to Baffin Bay or circumnavigates the basin flowing mostly along isobaths, meltwater from East Greenland can reach the interior of the basin where it may influence stratification and winter convection whenever winds are anomalously upwelling favorable in late summer and early fall. 
    more » « less
  3. Baffin Bay exports Arctic Water to the North Atlantic while receiving northward flowing Atlantic Water. Warm Atlantic Water has impacted the retreat of tidewater glaciers draining the Greenland Ice Sheet. Periods of enhanced Atlantic Water transport into Baffin Bay have been observed, but the oceanic processes are still not fully explained. At the end of 2010 the net transport at Davis Strait, the southern gateway to Baffin Bay, reversed from southward to northward for a month, leading to significant northward oceanic heat transport into Baffin Bay. This was associated with an extreme high in the Greenland Blocking Index and a stormtrack path that shifted away from Baffin Bay. Thus fewer cyclones in the Irminger Sea resulted in less frequent northerly winds along the western coast of Greenland, allowing anomalous northward penetration of warm waters, reversing the volume and heat transport at Davis Strait. 
    more » « less
  4. Abstract West Antarctic ice-shelf thinning is primarily caused by ocean-driven basal melting. Here we assess ocean variability below Thwaites Eastern Ice Shelf (TEIS) and reveal the importance of local ocean circulation and sea-ice. Measurements obtained from two sub-ice-shelf moorings, spanning January 2020 to March 2021, show warming of the ice-shelf cavity and an increase in meltwater fraction of the upper sub-ice layer. Combined with ocean modelling results, our observations suggest that meltwater from Pine Island Ice Shelf feeds into the TEIS cavity, adding to horizontal heat transport there. We propose that a weakening of the Pine Island Bay gyre caused by prolonged sea-ice cover from April 2020 to March 2021 allowed meltwater-enriched waters to enter the TEIS cavity, which increased the temperature of the upper layer. Our study highlights the sensitivity of ocean circulation beneath ice shelves to local atmosphere-sea-ice-ocean forcing in neighbouring open oceans. 
    more » « less
  5. Abstract In coastal regions and marginal bodies of water, the increase in partial pressure of carbon dioxide (pCO2) in many instances is greater than that of the open ocean due to terrestrial (river, estuarine, and wetland) influences, decreasing buffering capacity and/or increasing water temperatures. Coastal oceans receive freshwater from rivers and groundwater as well as terrestrial-derived organic matter, both of which have a direct influence on coastal carbonate chemistry. The objective of this research is to determine if coastal marshes in Georgia, USA, may be “hot-spots” for acidification due to enhanced inorganic carbon sources and if there is terrestrial influence on offshore acidification in the South Atlantic Bight (SAB). The results of this study show that dissolved inorganic carbon (DIC) and total alkalinity (TA) are elevated in the marshes compared to predictions from conservative mixing of the freshwater and oceanic end-members, with accompanying pH around 7.2 to 7.6 within the marshes and aragonite saturation states (ΩAr) <1. In the marshes, there is a strong relationship between the terrestrial/estuarine-derived organic and inorganic carbon and acidification. Comparisons of pH, TA, and DIC to terrestrial organic material markers, however, show that there is little influence of terrestrial-derived organic matter on shelf acidification during this period in 2014. In addition, ΩArincreases rapidly offshore, especially in drier months (July). River stream flow during 2014 was anomalously low compared to climatological means; therefore, offshore influences from terrestrial carbon could also be decreased. The SAB shelf may not be strongly influenced by terrestrial inputs to acidification during drier than normal periods; conversely, shelf waters that are well-buffered against acidification may not play a significant role in mitigating acidification within the Georgia marshes. 
    more » « less