The offshore transport of Greenland coastal waters influenced by freshwater input from ice sheet melting during summer plays an important role in ocean circulation and biological processes in the Labrador Sea. Many previous studies over the last decade have investigated shelfbreak transport processes in the region, primarily using ocean model simulations. Here, we use 27 years of surface geostrophic velocity observations from satellite altimetry, modified to include Ekman dynamics based on atmospheric reanalysis, and virtual particle releases to investigate seasonal and interannual variability in transport of coastal water in the Labrador Sea. Two sets of tracking experiments were pursued, one using geostrophic velocities only, and another using total velocities including the wind effect. Our analysis revealed substantial seasonal variability, even when only geostrophic velocities were considered. Water from coastal southwest Greenland is generally transported northward into Baffin Bay, although westward transport off the west Greenland shelf increases in fall and winter due to winds. Westward offshore transport is increased for water from southeast Greenland so that, in some years, water originating near the east Greenland coast during summer can be transported into the central Labrador Sea and the convection region. When wind forcing is considered, long-term trends suggest decreasing transport of Greenland coastal water during the melting season toward Baffin Bay, and increasing transport into the interior of the Labrador Sea for water originating from southeast Greenland during summer, where it could potentially influence water column stability. Future studies using higher-resolution velocity observations are needed to capture the role of submesoscale variability in transport pathways in the Labrador Sea.
more »
« less
Controls on the Transport of Meltwater From the Southern Greenland Ice Sheet in the Labrador Sea
Abstract Coastal waters in the Labrador Sea are influenced by the seasonal input of meltwater from the Greenland ice sheet, which is predicted to more than double by the end of the century. Mechanisms controlling the offshore export of meltwater can have a significant effect on stratification and vertical stability in the Labrador Sea, being particularly important if the meltwater is transported toward the interior of the basin where winter convection occurs. Here we use a high‐resolution ocean model to show that coastal upwelling winds play a critical role transporting the meltwater offshore to about 150 km from the coast, where increased eddy activity and mean circulation can then transport the meltwater farther offshore. While meltwater discharged from West Greenland is either transported to Baffin Bay or circumnavigates the basin flowing mostly along isobaths, meltwater from East Greenland can reach the interior of the basin where it may influence stratification and winter convection whenever winds are anomalously upwelling favorable in late summer and early fall.
more »
« less
- Award ID(s):
- 1643468
- PAR ID:
- 10375133
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 124
- Issue:
- 6
- ISSN:
- 2169-9275
- Page Range / eLocation ID:
- p. 3551-3560
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Arctic‐origin and Greenland meltwaters circulate cyclonically in the boundary current system encircling the Labrador Sea. The ability of this freshwater to penetrate the interior basin has important consequences for dense water formation and the lower limb of the Atlantic Meridional Overturning Circulation. However, the precise mechanisms by which the freshwater is transported offshore, and the magnitude of this flux, remain uncertain. Here, we investigate wind‐driven upwelling northwest of Cape Farewell using 4 years of high‐resolution data from the Overturning in the Subpolar North Atlantic Program west Greenland mooring array, deployed from September 2014–2018, along with Argo, shipboard, and atmospheric reanalysis data. A total of 49 upwelling events were identified corresponding to enhanced northwesterly winds, followed by reduced along‐stream flow of the boundary current and anomalously dense water present on the outer shelf. The events occur during the development stage of forward Greenland tip jets. During the storms, a cross‐stream Ekman cell develops that transports freshwater offshore in the surface layer and warm, saline, Atlantic‐origin waters onshore at depth. The net fluxes of heat and freshwater for a representative storm are computed. Using a one‐dimensional mixing model, it is shown that the freshwater input resulting from the locus of winter storms could significantly limit the wintertime development of the mixed layer and hence the production of Labrador Sea Water in the southeastern part of the basin.more » « less
-
Abstract The Greenland Ice Sheet is losing mass at an accelerating pace, increasing its contribution to the freshwater input into the Nordic Seas and the subpolar North Atlantic. It has been proposed that this increased freshwater may impact the Atlantic Meridional Overturning Circulation by affecting the stratification of the convective regions of the North Atlantic and Nordic Seas. Observations of the transformation and pathways of meltwater from the Greenland Ice Sheet on the continental shelf and in the gyre interior, however, are lacking. Here, we report on noble gas derived observations of submarine meltwater distribution and transports in the East and West Greenland Current Systems of southern Greenland and around Cape Farewell. In southeast Greenland, submarine meltwater is concentrated in the East Greenland Coastal Current core with maximum concentrations of 0.8%, thus significantly diluted relative to fjord observations. It is found in water with density ranges from 1,024 to 1027.2 kg m−3and salinity from 30.6 to 34, which extends as deep as 250 m and as far offshore as 60 km on the Greenland shelf. Submarine meltwater transport on the shelf averages 5.0 ± 1.6 mSv which, if representative of the mean annual transport, represents 60%–80% of the total solid ice discharge from East Greenland and suggests relatively little offshore export of meltwater east and upstream of Cape Farewell. The location of the meltwater transport maximum shifts toward the shelfbreak around Cape Farewell, positioning the meltwater for offshore flux in regions of known cross‐shelf exchange along the West Greenland coast.more » « less
-
null (Ed.)Abstract The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 mid-depth intensified cyclones were identified that passed the array near the 2000 m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm/s, and a core propagation velocity of 27 cm/s. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m thick lens of dense water at the bottom of the water column, and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey east of Cape Farewell, conducted in summer 2020, captured two of these features which shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.more » « less
-
Abstract. In the coming decades increasing amounts of freshwater are predicted to enter the subpolar North Atlantic from Greenland and the Arctic. If this additional freshwater reaches the regions where deep convection occurs, it could potentially dampen ventilation and the formation of deep waters. In this study, we use a surface drifter dataset spanning the period 1990–2023 to investigate the pathways followed by waters originating from Davis Strait and Hudson Strait on the Labrador shelf and into the interior subpolar North Atlantic. Recent drifter deployments in the region allow for an improved understanding of the circulation on the Labrador shelf, in particular its northern part, where prior data were sparse. We show that waters originating from Davis Strait and Hudson Strait remain on the shelf as they flow downstream until they reach the Newfoundland shelf. This confirms that very little exchange takes place between the Labrador shelf and the interior Labrador Sea. Decomposing the Labrador shelf into five regions, we further describe typical pathways for these waters and show that extensive exchanges take place between the coastal and shelf-break branches of the Labrador Current. Our results suggest that if an increasing amount of freshwater reaches the Labrador shelf, it would not directly affect the Labrador Sea convection region; instead, it would lead to the formation of a salinity anomaly off the Grand Banks, which could then circulate around the subpolar North Atlantic.more » « less
An official website of the United States government
